Apparent Metabolizable Energy and Amino Acid Digestibility of Corn of Different Origin Fed to Male Broilers from 12 to 18 Days of Age
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Care
2.2. Bird Husbandry
2.3. Feed Formulation, Manufacture, and Experimental Design
2.4. Metabolizable Energy Assay
2.5. Amino Acid Digestibility Assay
2.6. Statistical Analyses
3. Results
3.1. Apparent Metabolizable Energy
3.2. Apparent Ileal Amino Acid Digestibility
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cowieson, A.J. Factors that affect the nutritional value of maize for broilers. Anim. Feed Sci. Technol. 2005, 119, 293–305. [Google Scholar] [CrossRef]
- Ravindran, V. Main ingredients used in poultry feed formulations. In Poultry Development Review; FAO: Rome, Italy, 2013; pp. 67–69. [Google Scholar]
- Dei, H.K. Assessment of maize (Zea mays) as feed resource for poultry. In Poultry Science; InTech: Houston TX, USA, 2017. [Google Scholar]
- Ravindran, V.; Blair, R. Feed resources for poultry production in Asia and the Pacific region. I. Energy Sources. Worlds Poult. Sci. J. 1991, 47, 213–231. [Google Scholar] [CrossRef]
- Zuber, T.; Rodehutscord, M. Variability in amino acid digestibility and metabolizable energy of corn studied in cecectomized laying hens. Poult. Sci. 2017, 96, 1696–1706. [Google Scholar] [CrossRef] [PubMed]
- Gehring, C.K.; Bedford, M.R.; Cowieson, A.J.; Dozier, W.A. Effects of corn source on the relationship between in vitro assays and ileal nutrient digestibility. Poult. Sci. 2012, 91, 1908–1914. [Google Scholar] [CrossRef]
- Reynolds, T.L.; Nemeth, M.A.; Glenn, K.C.; Ridley, W.P.; Astwood, J.D. Natural variability of metabolites in maize grain: Differences due to genetic background. J. Agric. Food Chem. 2005, 53, 10061–10067. [Google Scholar] [CrossRef]
- Gausman, H.W.; Ramser, J.H.; Dungan, G.H.; Earle, F.R.; MacMasters, M.M.; Hall, H.H.; Baird, P.D. Some effects of artificial drying of corn grain. Plant Physiol. 1952, 27, 794–802. [Google Scholar] [CrossRef]
- Emerick, R.J.; Carlson, C.W.; Winterfeld, H.L. Effect of heat drying upon the nutritive value of corn. Poult. Sci. 1961, 40, 991–995. [Google Scholar] [CrossRef]
- Iji, P.A.; Khumalo, K.; Slippers, S.; Gous, R.M. Intestinal function and body growth of broiler chickens on diets based on maize dried at different temperatures and supplemented with a microbial enzyme. Reprod. Nutr. Dev. 2003, 43, 77–90. [Google Scholar] [CrossRef]
- Bhuiyan, M.M.; Islam, A.F.; Iji, P.A. Variation in nutrient composition and structure of high-moisture maize dried at different temperatures. Afr. J. Anim. Sci. 2010, 40, 190–197. [Google Scholar] [CrossRef]
- Pomeranz, Y.; Zeleny, L. Biochemical and functional changes in stored cereal grains. Crit. Rev. Food Sci. Nutr. 1971, 2, 45–80. [Google Scholar] [CrossRef]
- Dado, R.G. Nutritional benefits of speciality corn grain hybrids in dairy diets. J. Anim. Sci. 1999, 77, 197. [Google Scholar] [CrossRef] [PubMed]
- Moran, E.T. Starch Digestion in Fowl. Poult. Sci. 1982, 61, 1257–1267. [Google Scholar] [CrossRef] [PubMed]
- Wiseman, J.; Nicol, N.T.; Norton, G. Relationship between apparent metabolisable (AME) values and in vivo/in vitro starch digestibility of wheat for broilers. Worlds Poult. Sci. J. 2000, 56, 305–318. [Google Scholar] [CrossRef]
- Knudsen, K.E.B. Fiber and nonstarch polysaccharide content and variation in common crops used in broiler diets. Poult. Sci. 2014, 93, 2380–2393. [Google Scholar] [CrossRef] [PubMed]
- Douglas, M.W.; Peter, C.M.; Boling, S.D.; Parsons, C.M.; Baker, D.H. Nutritional evaluation of low phytate and high protein corns. Poult. Sci. 2000, 79, 1586–1591. [Google Scholar] [CrossRef]
- Barrier-Guillot, B.; Zuprizal; Jondreville, C.; Chagneau, A.M.; Larbier, M.; Leuillet, M. Effect of heat drying temperature on the nutritive value of corn in chickens and pigs. Anim. Feed Sci. Technol. 1993, 41, 149–159. [Google Scholar] [CrossRef]
- Leeson, S.; Summers, J. Commercial Poultry Nutrition, 3rd ed.; Nottingham University Press: Nottingham, UK, 2005. [Google Scholar]
- Carvalho, D.C.; Albino, L.F.T.; Vargas Junior, J.; Toledo, R.S.; Oliveira, J.E.; Souza, R.M. Coeficiente de digestibilidade verdadeira dos aminoácidos e valores de aminoácidos digestíveis do milho submetido a diferentes temperaturas de secagem e períodos de armazenamento. R. Bras. Zootec. 2009, 38, 850–856. [Google Scholar] [CrossRef]
- Vargas, J.I.; Gulizia, J.P.; Bonilla, S.M.; Sasia, S.; Pacheco, W.J. Effect of corn origin on broiler performance, processing yield, and nutrient digestibility from 1 to 35 days of age. Animals 2023, 13, 1248. [Google Scholar] [CrossRef]
- Wu, S.; Choct, M.; Pesti, G. Historical flaws in bioassays used to generate metabolizable energy values for poultry feed formulation: A critical review. Poult. Sci. 2020, 99, 385–406. [Google Scholar] [CrossRef]
- Hill, F.W.; Anderson, D.L. Comparison of metabolizable energy and productive energy determinations with growing chicks. J. Nutr. 1958, 64, 587–603. [Google Scholar] [CrossRef]
- Kerr, B.J.; Dozier, W.A.; Shurson, G.C. Lipid digestibility and energy content of distillers’ corn oil in swine and poultry. J. Anim. Sci. 2016, 94, 2900–2908. [Google Scholar] [CrossRef] [PubMed]
- Short, F.J.; Gorton, P.; Wiseman, J.; Boorman, K.N. Determination of titanium dioxide added as an inert marker in chicken digestibility studies. Anim. Feed Sci. Technol. 1996, 59, 215–221. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Kong, C.; Adeola, O. Evaluation of amino acid and energy utilization in feedstuff for swine and poultry diets. Asian Australas. J. Anim. Sci. 2014, 27, 917–925. [Google Scholar] [CrossRef]
- SAS Institute. SAS/STAT® User’s Guide Version 14.3; SAS Institute, Inc.: Cary, NC, USA, 2010. [Google Scholar]
- Labiski, R.F.; Anderson, W.L. Nutritional responses of pheasants to corn, with special reference to high-lysine corn. Ill. Nat. Hist. Surv. Bull. 1973, 31, 87–112. [Google Scholar] [CrossRef]
- Barzegar, S.; Wu, S.-B.; Noblet, J.; Swick, R.A. Metabolizable energy of corn, soybean meal and wheat for laying hens. Poult. Sci. 2019, 98, 5876–5882. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Parsons, C.M.; Alexander, D.E. Nutritive value of high oil corn for poultry. Poult. Sci. 1987, 66, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Saleh, E.A.; Watkins, S.E.; England, J.A.; Waldroup, P.W. Utilization of high oil corn in broiler diets varying in energy content. J. Appl. Poult. Res. 1997, 6, 107–115. [Google Scholar] [CrossRef]
- Benitez, J.A.; Gernat, A.G.; Murillo, J.G.; Araba, M. The use of high oil corn in broiler diets. Poult. Sci. 1999, 78, 861–865. [Google Scholar] [CrossRef]
- Daghir, N.J.; Farran, M.T.; Barbour, G.W.; Beck, M.M. Nutritive value of high-oil corn grown under semi-arid conditions and its impact on broiler performance and carcass composition. Poult. Sci. 2003, 82, 267–271. [Google Scholar] [CrossRef]
- Song, G.L.; Li, D.F.; Piao, X.S.; Chi, F.; Wang, J.T. Comparisons of amino acid availability by different methods and metabolizable energy determination of a chinese variety of high oil corn. Poult. Sci. 2003, 82, 1017–1023. [Google Scholar] [CrossRef]
- Rodrigues, S.I.F.C.; Stringhini, J.H.; Ceccantini, M.; Penz Júnior, A.M.; Ribeiro, A.M.L.; Peripolli, V.; McManus, C.M. Chemical and energetic content of corn before and after pre-cleaning. Ciênc. Anim. Bras. 2015, 16, 158–168. [Google Scholar] [CrossRef]
- Leeson, S.; Summers, J.D. Effect of adverse growing conditions on corn maturity and feeding value for poultry. Poult. Sci. 1976, 55, 588–593. [Google Scholar] [CrossRef]
- Baidoo, S.K.; Shires, A.; Robblee, A.R. Effect of kernel density on the apparent and true metabolizable energy value of corn for chickens. Poult. Sci. 1991, 70, 2102–2107. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.M.; Stalder, K.J.; Beitz, D.C.; Stahl, C.H.; Fithian, W.A.; Bregendahl, K. The correlation of chemical and physical corn kernel traits with production performance in broiler chickens and laying hens. Poult. Sci. 2008, 87, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Correa, C.E.S.; Shaver, R.D.; Pereira, M.N.; Lauer, J.G.; Kohn, K. Relationship between corn vitreousness and ruminal in situ starch degradability. J. Dairy Sci. 2002, 85, 3008–3012. [Google Scholar] [CrossRef]
- Batal, A.B.; Parsons, C.M. Utilization of various carbohydrate sources as affected by age in the chick. Poult. Sci. 2004, 83, 1140–1147. [Google Scholar] [CrossRef]
- Shires, A.; Thompson, J.R.; Turner, B.V.; Kennedy, P.M.; Goh, Y.K. Rate of passage of corn-canola meal and corn-soybean meal diets through the gastrointestinal tract of broiler and white leghorn chickens. Poult. Sci. 1987, 66, 289–298. [Google Scholar] [CrossRef]
- Lopez, G.; Leeson, S. Assessment of the nitrogen correction factor in evaluating metabolizable energy of corn and soybean meal in diets for broilers. Poult. Sci. 2008, 87, 298–306. [Google Scholar] [CrossRef]
- Hurwitz, S.; Bar, A. Rate of passage of calcium-45 and yttrium-91 along the intestine, and calcium absorption in the laying fowl. J. Nutr. 1966, 89, 311–316. [Google Scholar] [CrossRef]
- Perttila, S.J.; Valaja, J.; Jalava, T. Apparent ileal digestibility of amino acids and metabolisable energy value in grains for broilers. Agric. Food Sci. 2005, 14, 325–334. [Google Scholar] [CrossRef]
- Ravindran, V.; Hew, L.I.; Ravindran, G.; Bryden, W.L. Apparent ileal digestibility of amino acids in dietary ingredients for broiler chickens. Anim. Sci. 2005, 81, 85–97. [Google Scholar] [CrossRef]
- Singh, N.; Vasudev, S.; Yadava, D.K.; Chaudhary, D.P.; Prabhu, K.V. Oil improvement in maize: Potential and prospects. In Maize: Nutrition Dynamics and Novel Uses; Springer India: New Delhi, India, 2014. [Google Scholar]
- Huang, K.H.; Ravindran, V.; Li, X.; Bryden, W.L. Influence of age on the apparent ileal amino acid digestibility of feed ingredients for broiler chickens. Br. Poult. Sci. 2005, 46, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Noy, Y.; Sklan, D. Digestion and absorption in the young chick. Poult. Sci. 1995, 74, 366–373. [Google Scholar] [CrossRef]
- Ravindran, V.; Hendriks, W.H. Endogenous amino acid flows at the terminal ileum of broilers, layers and adult roosters. Anim. Sci. 2004, 79, 265–271. [Google Scholar] [CrossRef]
Nutrient | USA | ARG | BRA |
---|---|---|---|
Starch | 82.78 | 81.36 | 79.64 |
Crude protein | 9.49 | 9.85 | 9.45 |
Oil | 4.50 | 4.76 | 5.20 |
Amino Acids | |||
Arginine | 0.35 | 0.33 | 0.34 |
Cysteine | 0.19 | 0.18 | 0.19 |
Histidine | 0.26 | 0.25 | 0.25 |
Isoleucine | 0.33 | 0.33 | 0.31 |
Leucine | 1.00 | 1.01 | 0.92 |
Lysine | 0.28 | 0.27 | 0.27 |
Methionine + cysteine | 0.35 | 0.33 | 0.35 |
Methionine | 0.16 | 0.15 | 0.17 |
Phenylalanine | 0.43 | 0.43 | 0.39 |
Threonine | 0.29 | 0.30 | 0.29 |
Tryptophan | 0.05 | 0.05 | 0.06 |
Valine | 0.42 | 0.42 | 0.40 |
Ingredient | Basal Diet | Test Diet USA | Test Diet ARG | Test Diet BRA |
---|---|---|---|---|
Corn USA | - | 30.00 | - | - |
Corn ARG | - | - | 30.00 | - |
Corn BRA | - | - | - | 30.00 |
Local corn 1 | 27.89 | 27.89 | 27.89 | 27.89 |
Soybean meal, 48.9% CP | 37.87 | 37.87 | 37.87 | 37.87 |
Dextrose | 30.00 | - | - | - |
Poultry oil | 1.48 | 1.48 | 1.48 | 1.48 |
Limestone | 0.98 | 0.98 | 0.98 | 0.98 |
Dicalcium phosphate, 18% P | 0.66 | 0.66 | 0.66 | 0.66 |
Salt | 0.42 | 0.42 | 0.42 | 0.42 |
DL-Methionine, 99% | 0.34 | 0.34 | 0.34 | 0.34 |
L-Lysine | 0.06 | 0.06 | 0.06 | 0.06 |
L-Threonine, 98% | 0.08 | 0.08 | 0.08 | 0.08 |
Choline chloride, 60% | 0.06 | 0.06 | 0.06 | 0.06 |
Trace mineral premix 2 | 0.10 | 0.10 | 0.10 | 0.10 |
Vitamin premix 3 | 0.08 | 0.08 | 0.08 | 0.08 |
OptiPhos® Plus 4, g/kg | 0.12 | 0.12 | 0.12 | 0.12 |
Calculated analysis | ||||
AMEn 5, kcal/kg | 3100 | - | - | - |
Crude protein | 20.77 | - | - | - |
Digestible Lys | 1.15 | - | - | - |
Digestible TSAA 6 | 0.87 | - | - | - |
Digestible Thr | 0.77 | - | - | - |
Digestible Ile | 0.82 | - | - | - |
Digestible Val | 0.87 | - | - | - |
Digestible Arg | 1.27 | - | - | - |
Calcium | 0.87 | - | - | - |
Available phosphorus | 0.44 | - | - | - |
Ingredient, % | Test Diet USA | Test Diet ARG | Test Diet BRA |
---|---|---|---|
Corn USA | 47.25 | - | - |
Corn ARG | - | 47.25 | - |
Corn BRA | - | - | 47.25 |
Dextrose | 47.25 | 47.25 | 47.25 |
Limestone | 1.27 | 1.27 | 1.27 |
Dicalcium phosphate, 18% P | 2.08 | 2.08 | 2.08 |
Salt | 0.20 | 0.20 | 0.20 |
Sodium bicarbonate | 0.20 | 0.20 | 0.20 |
Choline chloride, 60% | 0.25 | 0.25 | 0.25 |
Trace mineral premix 1 | 0.50 | 0.50 | 0.50 |
Vitamin premix 2 | 0.50 | 0.50 | 0.50 |
Titanium dioxide | 0.50 | 0.50 | 0.50 |
Treatment | Gross Energy | Apparent Metabolizable Energy | |
---|---|---|---|
kcal/kg | kcal/kg 1 | % of Gross Energy | |
USA | 4417 | 3651 | 82.66 |
ARG | 4422 | 3666 | 82.90 |
BRA | 4396 | 3694 | 84.04 |
SEM 2 | - | 21.60 | - |
p-value | - | 0.370 | - |
Treatment | Apparent Ileal Digestibility 1 | |||||
Met | Cys | Met + Cys | Lys | Thr | Val | |
USA | 85.00 | 71.94 | 77.91 | 68.11 | 64.08 | 74.44 |
ARG | 84.60 | 73.38 | 77.82 | 68.56 | 66.66 | 75.72 |
BRA | 86.74 | 75.09 | 80.58 | 70.44 | 66.75 | 75.71 |
SEM 2 | 0.95 | 1.23 | 1.09 | 2.17 | 1.56 | 1.38 |
p-value | 0.242 | 0.184 | 0.131 | 0.713 | 0.400 | 0.754 |
Treatment | Apparent Ileal Digestibility 1 | |||||
Ile | Trp | Leu | Phe | His | Arg | |
USA | 78.71 | 72.53 b | 87.51 | 82.50 | 82.92 | 78.90 |
ARG | 79.81 | 73.30 ab | 88.09 | 83.42 | 83.19 | 78.77 |
BRA | 79.90 | 77.45 a | 87.94 | 83.52 | 83.21 | 81.17 |
SEM 2 | 1.16 | 1.32 | 0.68 | 0.93 | 0.80 | 1.37 |
p-value | 0.722 | 0.024 | 0.829 | 0.694 | 0.961 | 0.376 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas, J.I.; Gulizia, J.P.; Bonilla, S.M.; Sasia, S.; Pacheco, W.J. Apparent Metabolizable Energy and Amino Acid Digestibility of Corn of Different Origin Fed to Male Broilers from 12 to 18 Days of Age. Animals 2023, 13, 3111. https://doi.org/10.3390/ani13193111
Vargas JI, Gulizia JP, Bonilla SM, Sasia S, Pacheco WJ. Apparent Metabolizable Energy and Amino Acid Digestibility of Corn of Different Origin Fed to Male Broilers from 12 to 18 Days of Age. Animals. 2023; 13(19):3111. https://doi.org/10.3390/ani13193111
Chicago/Turabian StyleVargas, Jose I., Joseph P. Gulizia, Susan M. Bonilla, Santiago Sasia, and Wilmer J. Pacheco. 2023. "Apparent Metabolizable Energy and Amino Acid Digestibility of Corn of Different Origin Fed to Male Broilers from 12 to 18 Days of Age" Animals 13, no. 19: 3111. https://doi.org/10.3390/ani13193111
APA StyleVargas, J. I., Gulizia, J. P., Bonilla, S. M., Sasia, S., & Pacheco, W. J. (2023). Apparent Metabolizable Energy and Amino Acid Digestibility of Corn of Different Origin Fed to Male Broilers from 12 to 18 Days of Age. Animals, 13(19), 3111. https://doi.org/10.3390/ani13193111