Advances in Genetic and Metabolic Pathways for Enhanced Milk Yield and Quality

A special issue of Animals (ISSN 2076-2615). This special issue belongs to the section "Animal Products".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 272

Special Issue Editor

College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
Interests: milk fat traits; gene regulation network construction; gene expression; epigenetic; circRNA; lincRNA miRNA; mRNA
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Milk, as an important source of nutrition for humans, plays a central role in global food security and the agricultural economy. With the growth of the population, the upgrading of consumer demands, and the increasing pressure on environmental resources, how to sustainably increase milk production and optimize its nutritional components (such as protein, fat content, and functional ingredients, etc.) through scientific means has become a cutting-edge topic in the fields of animal husbandry science and biotechnology. In recent years, the rapid development of genetics, molecular biology, and systems metabolic engineering has provided unprecedented opportunities for deciphering the genetic basis of animal production traits, regulating metabolic networks, and formulating precise breeding strategies. This Special Issue focuses on the research progress in this field. It aims to integrate the research findings from different animals (including cattle, sheep, horses, etc.), reveal the key genetic and metabolic mechanisms (such as single nucleotide polymorphisms, microRNAs, etc., all of which are included) that drive milk production and quality, and gain a better understanding of the applications of dairy products.

Dr. Zhi Chen
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Animals is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • milk yield
  • milk composition
  • transcription factor
  • dairy
  • heredity
  • metabonomics
  • breeding strategies

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 3293 KB  
Article
CRISPR/Cas9-Mediated TARDBP Knockout Reduces Triacylglycerol Content and Key Milk Fat Metabolism Gene Expression in MAC-T Cells
by Yaran Zhang, Qinglan Zhang, Yaping Gao, Yao Xiao, Jinpeng Wang, Chunhong Yang, Zhihua Ju, Xiaochao Wei, Xiuge Wang, Qiang Jiang and Jinming Huang
Animals 2025, 15(17), 2607; https://doi.org/10.3390/ani15172607 - 5 Sep 2025
Abstract
TARDBP mediates milk fat secretion in mice by binding to UG-rich sequences in the 3′ untranslated region (UTR) of BTN1A1 and XDH mRNA and enhancing their mRNA stability. However, its role in bovine milk lipid metabolism remains unclear. To investigate this, we generated [...] Read more.
TARDBP mediates milk fat secretion in mice by binding to UG-rich sequences in the 3′ untranslated region (UTR) of BTN1A1 and XDH mRNA and enhancing their mRNA stability. However, its role in bovine milk lipid metabolism remains unclear. To investigate this, we generated TARDBP knockout (KO) MAC-T cells using CRISPR/Cas9 technology, quantified triacylglycerol (TAG) levels in both cells and culture supernatant, and examined the impact of TARDBP on mRNA levels in MAC-T cells through transcriptome sequencing. We found that deletion of TARDBP reduced TAG content in both MAC-T cells and the supernatant, as well as decreased mRNA levels of CD36, FABP4, DGAT1, PPARG, and PPARGC1A. However, the expression of BTN1A1 and XDH was unaffected in bovine MAC-T cells. Sequence analysis further revealed TG-rich sequences within bovine PPARG and PPARGC1A but not in FABP4, DGAT1, CD36, or BTN1A1 and XDH. These findings suggest that TARDBP may regulate bovine lipid metabolism through a mechanism distinct from that described in mice. This study provides new insights into the molecular role of TARDBP in bovine milk fat metabolism and establishes a foundation for understanding its contribution to dairy cattle breeding and milk quality improvement. Full article
Show Figures

Figure 1

Back to TopTop