- Article
Spatiotemporal Graph Neural Networks for PM2.5 Concentration Forecasting
- Vongani Chabalala,
- Craig Rudolph and
- Bruce Mellado
- + 10 authors
Air pollution, particularly fine particulate matter (PM2.5), poses significant public health and environmental risks. This study explores the effectiveness of spatiotemporal graph neural networks (ST-GNNs) in forecasting PM2.5 concentrations by integrating remote-sensing hyperspectral indices with traditional meteorological and pollutant data. The model was evaluated using data from Switzerland and the Gauteng province in South Africa, with datasets spanning from January 2016 to December 2021. Key performance metrics, including root mean squared error (RMSE), mean absolute error (MAE), probability of detection (POD), critical success index (CSI), and false alarm rate (FAR), were employed to assess model accuracy. For Switzerland, the integration of spectral indices improved RMSE from 1.4660 to 1.4591, MAE from 1.1147 to 1.1053, CSI from 0.8345 to 0.8387, POD from 0.8961 to 0.8972, and reduced FAR from 0.0760 to 0.0719. In Gauteng, RMSE decreased from 6.3486 to 6.2319, MAE from 4.4891 to 4.4066, CSI from 0.9555 to 0.9560, and POD from 0.9699 to 0.9732, while FAR slightly increased from 0.0154 to 0.0181. Error analysis revealed that while the initial one-day ahead forecast without spectral indices had a marginally lower error, the dataset with spectral indices outperformed from the two-day ahead mark onwards. The error for Swiss monitoring stations stabilized over longer prediction lengths, indicating the robustness of the spectral indices for extended forecasts. The study faced limitations, including the exclusion of the Planetary Boundary Layer (PBL) height and K-index, lack of terrain data for South Africa, and significant missing data in remote sensing indices. Despite these challenges, the results demonstrate that ST-GNNs, enhanced with hyperspectral data, provide a more accurate and reliable tool for PM2.5 forecasting. Future work will focus on expanding the dataset to include additional regions and further refining the model by incorporating additional environmental variables. This approach holds promise for improving air quality management and mitigating health risks associated with air pollution.
13 January 2026





