Advancements in Genetic Research and Breeding of Sugar Crops

A special issue of Agronomy (ISSN 2073-4395). This special issue belongs to the section "Crop Breeding and Genetics".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 671

Special Issue Editor


E-Mail Website
Guest Editor
Agronomy Department, Guangxi University, Nanning 530004, China
Interests: molecular breeding; gene mapping; genomics and genetics; plant breeding; bioinformatics

Special Issue Information

Dear Colleagues,

Sugar crops, including sugarcane and sugar beet, play a crucial role in the global sugar industry. They are not only vital for food security, but also serve as important sources for bioenergy production. This Special Issue aims to provide a comprehensive and cutting-edge platform for researchers, breeders, and industry professionals to share their latest findings, innovative approaches, and practical experiences in the genetic research and breeding of sugar crops.

The primary aim of this Special Issue is to highlight the most recent and significant advancements in the genetic research and breeding of sugar crops. We seek to bring together a collection of high-quality research articles, reviews, and case studies that showcase the latest breakthroughs in understanding the genetic basis of sugar crop traits, the development of new breeding techniques, and the application of these advancements to improve crop yield, quality, and resilience. By doing so, we hope to contribute to the sustainable development of the sugar industry and address the challenges posed by climate change, resource limitations, and evolving market demands.

Dr. Xiping Yang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agronomy is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sugar crops genetics
  • molecular biology and biochemistry
  • genomic and molecular studies
  • breeding techniques
  • phenomics and high-throughput screening
  • environmental resilience
  • genetic engineering and biotechnology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 5985 KB  
Article
Time-Course Transcriptome Analysis Reveals Dynamic Nitrogen Response Mechanisms and Key Regulatory Networks in Sugarcane
by Wanru Wang, Lijun Zhang, Shuai Liu, Meiyan Chen and Xiping Yang
Agronomy 2025, 15(9), 2164; https://doi.org/10.3390/agronomy15092164 - 10 Sep 2025
Viewed by 335
Abstract
Nitrogen is an essential mineral nutrient for plant growth and development. However, the molecular response mechanisms of sugarcane under varying nitrogen regimes remain unclear. This study investigated the dynamic responses of sugarcane (GT42) leaves to nitrogen treatment using hydroponic systems. Leaf samples were [...] Read more.
Nitrogen is an essential mineral nutrient for plant growth and development. However, the molecular response mechanisms of sugarcane under varying nitrogen regimes remain unclear. This study investigated the dynamic responses of sugarcane (GT42) leaves to nitrogen treatment using hydroponic systems. Leaf samples were collected under low nitrogen (LN, 0.2 mM NH4NO3) and normal nitrogen (NN, 2 mM NH4NO3) treatments at 1, 3, 6, 12, 24, 48, and 72 h, as well as under high nitrogen (HN, 6 mM NH4NO3) treatment at 3, 6, and 24 h. RNA-Seq analysis identified differentially expressed genes (DEGs) between LN/NN and HN/NN treatments at corresponding time points. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEGs from both LN/NN and HN/NN comparisons revealed significant enrichment in nitrogen metabolism and zeatin biosynthesis pathways. These findings aligned with our Weighted Gene Co-Expression Network Analysis (WGCNA) results from LN-treated samples. Through detailed reconstruction of the nitrogen metabolic pathway and zeatin biosynthesis co-expression networks, we established their pivotal regulatory roles in sugarcane’s adaptation to varying nitrogen availability. Our results demonstrate a dynamic, concentration-dependent regulatory network in sugarcane leaves under nitrogen treatment. These findings provide potential targets for improving nitrogen use efficiency (NUE) in sugarcane breeding programs. The study offers new insights into the molecular mechanisms underlying sugarcane’s response to nitrogen fluctuations, with implications for developing nitrogen-efficient cultivars. Full article
(This article belongs to the Special Issue Advancements in Genetic Research and Breeding of Sugar Crops)
Show Figures

Figure 1

Back to TopTop