Soil Microbial Community and Ecological Function in Agriculture

A special issue of Agriculture (ISSN 2077-0472). This special issue belongs to the section "Agricultural Soils".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 1532

Special Issue Editor


E-Mail Website
Guest Editor
Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Interests: soil microbial ecology; microbial function; desert grassland; global change; land-use change

Special Issue Information

Dear Colleagues,

Soil microbial communities are fundamental to ecosystem functioning and sustainability. Soil microbes play crucial roles in nutrient cycling, organic matter decomposition, soil structure formation, and the regulation of plant health and productivity. Over the years, research has highlighted the intricate interactions between soil microbes, plants, and the environment, emphasizing their importance in maintaining ecological balance and responding to environmental changes.

This Special Issue aims to advance the understanding of soil microbial communities and their ecological functions. The Issue will focus on how soil microbes contribute to ecosystem services, their responses to climate change and human activities, and their potential in sustainable agricultural and environmental remediation.

Recent technological advancements, such as high-throughput sequencing, metagenomics, and metabolomics, have enhanced our ability to study soil microbial communities. There is a growing interest in understanding the impact of global environmental changes on microbial community dynamics and functions in various ecosystems.

Topics of interest include, but are not limited to, the following:

  • Diversity and composition of soil microbial communities in various ecosystems.
  • Functional analyses of soil microbes and their contributions to nutrient cycling.
  • Microbe–microbe and microbe–plant interactions in the soil environment.
  • Effects of environmental changes, such as climate change, pollution, and land-use practices, on soil microbial ecology.
  • Applications of soil microbes in agriculture and degraded land restoration.

We encourage submissions that offer novel insights, utilize interdisciplinary approaches, and have practical implications for ecosystem management and sustainability.

Prof. Dr. Shaokun Wang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agriculture is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • microbial diversity
  • microbial function
  • microbe–soil–plant interaction
  • global change
  • microbial remediation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 3514 KiB  
Article
Arbuscular Mycorrhizal Fungi Play More Important Roles in Saline–Sodic Soil than in Black Soil of the Paddy Field in Northeast China
by Dongxue Jiang, Yuxin Yan, Jiaqi Li, Chenyu Zhang, Shaoqi Huangfu, Yang Sun, Chunyu Sun, Lihua Huang and Lei Tian
Agriculture 2025, 15(9), 951; https://doi.org/10.3390/agriculture15090951 - 27 Apr 2025
Viewed by 164
Abstract
Rice serves as the staple food for half of the world’s population. Given the expanding global population, the urgency to allocate land for rice cultivation is paramount. In Northeast China, saline–sodic and black soils represent two distinct soil types used in rice production. [...] Read more.
Rice serves as the staple food for half of the world’s population. Given the expanding global population, the urgency to allocate land for rice cultivation is paramount. In Northeast China, saline–sodic and black soils represent two distinct soil types used in rice production. During rice growth, soil microorganisms, including arbuscular mycorrhizal fungi (AMF), play pivotal roles in nutrient uptake and resistance to biotic and abiotic stressors. While numerous studies have elucidated the role of AMF in enhancing rice growth and its adaptation to stress, the differences in AMF communities within paddy fields between different soil types have been largely overlooked. In this study, high-throughput sequencing technology was employed to analyze the diversity and community structure of AMF, and metagenomic sequencing was employed to analyze AMF functional gene differences between the two soil types (black and saline–sodic soils). At the same time, the commonalities and differences of the soil characteristics (nitrogen, phosphorus, potassium, pH, etc.) were verified in influencing AMF communities. The results indicated that Glomus was the predominant genus in both soil types, followed by Paraglomus. The overall abundance of AMF was higher at the heading stage than at the harvest stage, with Paraglomus showing greater adaptation to the saline–sodic soil environment. Total phosphorus (TP) was identified as the primary factor influencing AMF diversity at the heading stage. In the harvest stage, AMF community diversity was greater in saline–sodic paddy soil compared to black soil, a reversal from the heading stage. Further analysis of the functional genes of Rhizophagus intraradices revealed that gene activity in the heading stage of saline soils significantly surpassed that in black soils, suggesting that R. intraradices plays a more crucial role in saline environments. Additionally, spore density and the content of easily extractable glomalin-related soil protein were relatively higher in saline–sodic soil than in black soil. Thus, it may be inferred that AMFs are more vital in saline–sodic soils than in black soils of the paddy fields in Northeast China. This study may offer valuable insights into the utilization of AMF in paddy fields in Northeast China. Full article
(This article belongs to the Special Issue Soil Microbial Community and Ecological Function in Agriculture)
Show Figures

Figure 1

16 pages, 6153 KiB  
Article
Precipitation Controls Topsoil Nutrient Buildup in Arid and Semiarid Ecosystems
by Eduardo Medina-Roldán, Meixin Wang, Takafumi Miyasaka, Yueming Pan, Xiang Li, Bing Liu and Hao Qu
Agriculture 2024, 14(12), 2364; https://doi.org/10.3390/agriculture14122364 - 23 Dec 2024
Viewed by 869
Abstract
Soil nutrient buildup is a key process in nutrient-poor arid and semiarid regions. However, our knowledge of the factors that control soil nutrient buildup in these systems is still limited. An experiment was set up and carried out for five and a half [...] Read more.
Soil nutrient buildup is a key process in nutrient-poor arid and semiarid regions. However, our knowledge of the factors that control soil nutrient buildup in these systems is still limited. An experiment was set up and carried out for five and a half years in order to investigate how precipitation and other site factors control soil nutrient buildup. Topsoil carbon (C), nitrogen (N), phosphorus (P), and potassium (K) derived from litter (soil nutrient buildup) were tracked twice a year at two sites differing in terms of climate and soils (Urat: arid and Naiman: semiarid, both in Inner Mongolia). Precipitation was manipulated at both sites to include seven precipitation levels: three reduced levels (−20, −40, and −60% with respect to the background), background (control), and three enhanced levels (+20, +40, and +60% with respect to the background). The dynamic buildup (i.e., amount of nutrients released among consecutive samplings) for all nutrients was controlled by precipitation (nonlinearly), site effects (lower buildup at the site dominated by aeolian pedogenesis), and seasonality (higher under warm conditions). However, the considered nutrients differed in the factor that most determined their buildup. Through studying the concurrent dynamics of litter decomposition and soil nutrient buildup, we can foresee that changes in precipitation and land degradation are most likely to affect the soil nutrient pools in these ecosystems. Full article
(This article belongs to the Special Issue Soil Microbial Community and Ecological Function in Agriculture)
Show Figures

Figure 1

Back to TopTop