Previous Issue
Volume 1, September
 
 

Bioresour. Bioprod., Volume 1, Issue 2 (December 2025) – 1 article

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
12 pages, 3188 KB  
Communication
Influence of Pyrolysis Temperature on Critical Variables Related to Charcoal Spontaneous Combustion
by Tayná Rebonato Oliveira, Álison Moreira da Silva, Gabriela Fontes Mayrinck Cupertino, Fabíola Martins Delatorre, Gabriela Aguiar Amorim, Marina Passos de Souza, José Otávio Brito and Ananias Francisco Dias Júnior
Bioresour. Bioprod. 2025, 1(2), 6; https://doi.org/10.3390/bioresourbioprod1020006 - 8 Oct 2025
Viewed by 181
Abstract
Spontaneous combustion of charcoal is still not fully understood, generating uncertainties among producers, regulatory agencies, and the scientific community. This study evaluated the influence of final pyrolysis temperature (350, 450, 550, and 650 °C) on the properties of Eucalyptus spp. charcoal and its [...] Read more.
Spontaneous combustion of charcoal is still not fully understood, generating uncertainties among producers, regulatory agencies, and the scientific community. This study evaluated the influence of final pyrolysis temperature (350, 450, 550, and 650 °C) on the properties of Eucalyptus spp. charcoal and its relation to ignition behavior. Gravimetric yield, proximate composition, calorific value, and ignition temperature were determined. Charcoal yield decreased by 31% between 350 °C and 650 °C. Fixed carbon content increased from ~65% to ~93%, accompanied by a reduction in volatile matter (~35% to ~6%) and a corresponding rise in calorific value. Step-heating experiments, conducted in a furnace with infrared camera monitoring, showed that ignition temperature increased from ~273 °C in charcoal produced at 350 °C to ~424 °C in charcoal produced at 650 °C. Strong correlations indicated that higher fixed carbon and lower volatile matter contents are directly associated with higher ignition temperatures. These results demonstrate that increasing the final pyrolysis temperature improves both the thermal stability and the energy quality of charcoal, although at the expense of gravimetric yield. Since the methodology was based on forced heating rather than spontaneous combustion under near-ambient conditions, complementary tests are required to evaluate spontaneous combustion propensity. Overall, the findings provide practical insights to balance yield, quality, and safety while reinforcing the importance of standardized assessment protocols to ensure safer storage and transport of charcoal. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop