Bioresour. Bioprod., Volume 1, Issue 1 (September 2025) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
16 pages, 3952 KB  
Article
Analysis of Modifications to an Outdoor Field-Scale Rotating Algal Biofilm Reactor with a Focus on Biomass Productivity and Power Usage
by Davis R. Haag, Phillip E. Heck and Ronald C. Sims
Bioresour. Bioprod. 2025, 1(1), 4; https://doi.org/10.3390/bioresourbioprod1010004 - 19 Sep 2025
Viewed by 90
Abstract
Filtrate from dewatering anaerobically digested biosolids is a side-stream of wastewater treatment that contains high concentrations of nitrogen and phosphorus compounds that can serve as nutrients for cultivating microalgae biomass as biofilms for bioproduct production at Water Resource Recovery Facilities (WRRFs). One system [...] Read more.
Filtrate from dewatering anaerobically digested biosolids is a side-stream of wastewater treatment that contains high concentrations of nitrogen and phosphorus compounds that can serve as nutrients for cultivating microalgae biomass as biofilms for bioproduct production at Water Resource Recovery Facilities (WRRFs). One system used to cultivate attached microalgae biofilms is the rotating algal biofilm reactor (RABR). A pilot RABR with 72 m2 growth surface area, 11.5 m2 footprint area, and a liquid volume of 11,500 L was operated in an outdoor environment at the largest WRRF in Utah, U.S.A, the Central Valley Water Reclamation Facility (CVWRF). The configuration of the RABR was altered from the previous configuration with regard to temperature and duty cycle with the goal to maximize biomass productivity. Results included an increase in dry biomass productivity on a footprint basis from 8.8 g/m2/day to 26.8 g/m2/day (205%) while power requirements changed from 28.3 W to 91 W. The increase in biomass productivity has direct benefits for bioproducts including bioplastic, biofertilizer, and the extraction of lipids for conversion to biofuels. Full article
Show Figures

Graphical abstract

24 pages, 1916 KB  
Review
The Potential of Bioethanol from Agricultural Crop Residues: A Case Study of Algeria
by Monirul Islam Miskat, Aditta Chowdhury, Sadiq M. Sait and Rabiul Islam
Bioresour. Bioprod. 2025, 1(1), 3; https://doi.org/10.3390/bioresourbioprod1010003 - 19 Sep 2025
Viewed by 90
Abstract
Due to the ever-increasing energy demand, Algeria’s sustainable energy crisis is a significant problem. Plant and crop residues can be a solution to this problem if they are used for bioethanol production, a viable alternative to fossil fuels. This study explores the potential [...] Read more.
Due to the ever-increasing energy demand, Algeria’s sustainable energy crisis is a significant problem. Plant and crop residues can be a solution to this problem if they are used for bioethanol production, a viable alternative to fossil fuels. This study explores the potential of existing agricultural crop residues to overcome the sustainable energy crisis in Algeria. Agricultural residues such as cereals, roots and tubers, pulses, oil crops, vegetables, and fruits have great potential to solve the problem. The agricultural residues that are normally wasted can be utilized to produce bioethanol, which provides sustainable energy and also help to obtain a clean environment. It has been found that 1.65 million tons of bioethanol can be produced from Algeria’s available residues, which is equivalent to 44.10 petajoule of energy. Cereal and fruit residues contribute to most bioethanol generation, about 47.22% and 23.38%, respectively. In addition, bioethanol generated from residue can be used in Algeria’s transportation sector. Considering Algeria’s current energy condition, gasoline blended with ethanol such as E10 and E5 can be used in Algerian vehicles since no modification of vehicles is needed for utilizing these fuels. Research indicates that lignocellulosic biomass sources in Algeria, such as Alfa, olive pomace, and cereal straw, could provide up to 0.67 million tons of oil equivalent (Mtoe), representing approximately 4.37% of the energy consumption of the transport sector in Algeria. Algeria has the potential to produce up to 73.5 Mtoe and 57.9 Mtoe of renewable energy utilizing the energy crops. This study will also encourage relevant policymakers to develop sustainable energy policies that will enhance the renewable energy share in Algerian energy dynamics. Full article
Show Figures

Figure 1

28 pages, 886 KB  
Review
Heavy Metals in Bioenergy Crop Production, Biomass Quality, and Biorefinery: Global Impacts and Sustainable Management Strategies
by Amir Sadeghpour, Moein Javid, Sowmya Koduru, Sirwan Babaei and Eric C. Brevik
Bioresour. Bioprod. 2025, 1(1), 2; https://doi.org/10.3390/bioresourbioprod1010002 - 18 Sep 2025
Viewed by 170
Abstract
Heavy metals (HMs) including cadmium (Cd), lead (Pb), arsenic (As), zinc (Zn), copper (Cu), chromium (Cr), and nickel (Ni) pose significant challenges to bioenergy crop production due to their persistence, toxicity, and bioaccumulation in soils and plants. This study not only summarizes the [...] Read more.
Heavy metals (HMs) including cadmium (Cd), lead (Pb), arsenic (As), zinc (Zn), copper (Cu), chromium (Cr), and nickel (Ni) pose significant challenges to bioenergy crop production due to their persistence, toxicity, and bioaccumulation in soils and plants. This study not only summarizes the mechanisms of HM absorption, translocation, and accumulation in bioenergy crops, but also critically assesses their impact on crop development, biomass quality, and biorefinery processes. Heavy metals disrupt key physiological processes and modify lignocellulosic composition, which is important for biofuel and biogas production. Global soil contamination from sources like industrial emissions, mining, and agricultural activities exacerbates these problems, posing a threat to both energy security and environmental sustainability. Sustainable management strategies, including phytoremediation, microbial bioremediation, soil amendments, and genetic engineering, are explored to mitigate HM effects while enhancing crop resilience. This review emphasizes the importance of integrating techniques to balance bioenergy production with environmental and human health and safety, including the use of HM-tolerant crop varieties, enhanced biorefinery processes, and robust policy frameworks. Future research should focus on developing scalable remediation technologies and interdisciplinary solutions that align with the United Nations’ Sustainable Development Goals and meet global bioenergy needs. Full article
Show Figures

Figure 1

3 pages, 129 KB  
Editorial
Bioresources and Bioproducts: A New Open Access Journal
by Ronald C. Sims
Bioresour. Bioprod. 2025, 1(1), 1; https://doi.org/10.3390/bioresourbioprod1010001 - 18 Sep 2025
Viewed by 111
Abstract
Greetings to the bioresource and bioproducts community! I will serve as the Editor-in-Chief to collaborate with you as we promote the aims and scope of this new MDPI journal [...] Full article
Back to TopTop