Bridging Silence: A Scoping Review of Technological Advancements in Augmentative and Alternative Communication for Amyotrophic Lateral Sclerosis
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Data Extraction and Synthesis
3. Results
3.1. General Characteristics of Included Studies
3.1.1. Access Modality
3.1.2. Access Regarding ALS Stage and Phenotype
3.1.3. Outcome Categories and Metric Standardisation
| Author | Year | Participants | AAC Modality | Application | Results |
|---|---|---|---|---|---|
| Horis, J. et al. [45] | 2006 | 5 PALS | EOG and VEB | Selection | Threshold-based, 78-Letters: 87.2%, 8.7 letters/min vs. 12-Letters: 94.1%, 8.9 letters/min |
| Nijboer, F. et al. [25] | 2008 | 6 PALS | EEG (P300) | Communication & Selection | SWLDA, 78% accuracy–online, ITR 9.7 bits/min |
| Mugler, EM. et al. [47] | 2010 | 10 Healthy 3 PALS | EEG (P300) | Internet/ Browser access | SWLDA, 73% accuracy–online, ITR 8.67 bits/min |
| Bloch, S. [15] | 2011 | 4 AAC Records | Text-to-Speech | Analysis of AAC conversation | Difficulties can arise from topic shifts, from understanding the intended action of an AAC word in progress, and from recognising the possible endpoint of an utterance in a natural conversation between a person using an AAC system and an oral speaker. |
| Morris AM. et al. [46] | 2013 | 3 PALS 2 PLS 7 CP or other | Multimodal: Low to High-Tech | AAC interaction and use in the clinical context | Highlight the key barriers and challenges users face when communicating with a healthcare provider: planning and preparing for the appointment, time barriers, inappropriate assumptions, medical decision-making, perception, and implementing the plan of care. |
| McCane, M. et al. [14] | 2014 | 25 PALS | EEG (P300) | Communication & Selection | SWLDA–accuracy [12–92%]. PALS in LIS stat are eligible to use a visual P300-based BCI for communication. In case of a visual impairment, auditory P300-based BCIs might be effective. |
| Spataro, R. et al. [18] | 2014 | 30 PALS | Eye-Track Computer System | Utilisation | Median daily utilisation: 300 min (IQR) for communication, internet browsing, social media, email and work. Oculomotor impairment (dysfunction, gaze fatigue, etc.) reached up to 23.3%, limited function and access. |
| Caron J. et al. [40] | 2015 | 9 PALS | High-tech Speech-Generating Device | Attitudes, Perspectives and Impressions | Providing multiple communication options, including social media, preserves contact and access to communication partners and expands support networks as ALS progresses. |
| Jarosiewicz B. et al. [27] | 2015 | 2 PALS 2 LIS | ECoG | Computer Access and Control | Board layout selection (ABCDEF vs. QWERTY) enhanced usability. Retrospective auto-calibration produced comparable accuracy to the standard decoder (12 vs. 11.4 correct characters per min). Good typing speeds persisted through extended self-typing trials (1–2+ h). [96-channel microarrays over the hand and arm knob area of the dominant motor cortex] |
| Lancioni GE. et al. [48] | 2015 | 42 Health and Care Providers 4 PALS | Microswitches | Technology-Aided Programme: Leisure activities | Microswitches (light-pressure sensors) are a valid resource for PALS when properly trained, anatomic selection, adjustment, and positioning are used. An optic microswitch can be used with a small lip/face response. |
| McCane, M. et al. [24] | 2015 | 14 Healthy 14 PALS | EEG (P300) | Access Speed and Accuracy of ERP-based BCI Systems | P300 speller accuracy and speed did not differ between visually capable PALS vs. controls, but ERP morphology (P300, N200, LN) did. Adding additional ERP components and alternative configurations may improve system performance for ALS. |
| Pasqualotto E. et al. [38] | 2015 | 11 PALS 1 PMND | EEG (P300, visual) and Eye-Track | Usability and Cognitive Workload | Eye-track outperformed visual P300 EEG in both ITR and usability (System Usability Scale), while cognitive workload was significantly higher for the BCI. Future visual BCI designs should incorporate eye–tracking–based control, or a multimodal approach. |
| Rahnama M. et al. [19] | 2015 | 4 Healthy 1 PALS | Eye-Track | Access and Control | A calibration-free eye-tracking system might be feasible for PALS. The mean error rate was 5.68%, which is acceptable. Accuracy was lower than that of some commercial systems but might compensate for ocular access issues. |
| Wang, Y. et al. [22] | 2015 | 3 Healthy 1 PALS | EMG | Rehabilitation | Accuracy: facial expressions 98% vs. finger movements 93.9% vs. hand and arm movements 100% Threshold-based |
| Geronimo A. et al. [37] | 2016 | 15 Healthy 25 PALS | EEG (P300) | Access and Selection | Cognitive deficits lower the task-relevant EEG signal-to-noise ratio and reduce BCI accuracy; behavioural dysfunction further impairs P300 performance. Age influences paradigm suitability, with older PALS performing better on P300 speller outcomes than on motor-imagery tasks. Triage should include cognitive and behavioural screening. |
| Chang, WD. et al. [20] | 2017 | 18 Healthy 3 PALS | EOG | Communication | DTW/DPW/SVM Accuracy: Healthy [91–95%] vs. PALS [81–85%] |
| Poletti B. et al. [49] | 2017 | 21 PALS | Eye-Track | Assessment of Cognitive Abilities | Eye tracker–based cognitive testing outperformed the Frontal Assessment Battery8 and matched MoCA/WM in diagnostic accuracy while maintaining consistent usability. It enables a comprehensive assessment of ALS-specific cognitive domains and overcomes the limitations of standard paper-based tools in later stages of ALS. |
| Guy, V. et al. [43] | 2018 | 20 PALS | EEG (P300) | Communication & Selection | PALS completed all spelling tasks and were efficient, with 65% selecting more than 95% of the correct symbols. The number of correct symbols selected/minute: [3.6 (without prediction) vs. 5.04 (with)]. |
| Kin DY. et al. [21] | 2018 | 10 Healthy 2 PALS (LIS) | EOG | Communication | Accuracy was 94% for healthy subjects and PALS with 6s decision windows. In a binary (yes/no) task, PALS scored 94% in a 26–30 question. |
| Milekovic T. et al. [28] | 2018 | 1 PALS 1 LIS | ECoG | Restore Communication in LIS state | Participants performed functional tasks (typing messages, using text-to-speech, and sending emails) at spelling rates of 3.07–6.88 correct characters per minute. [6-channel intracortical multielectrode array implanted in the dominant precentral gyrus arm area]. |
| Nuyujukian P. et al. [50] | 2018 | 2 PALS 1 SPI (C4) | ECoG | Multielectrode arrays (hand ar ea: Dominant motor cortex) | A point-and-click Bluetooth mouse enabled participants to browse, email, chat, play music apps, and send texts; two users used the BCI to chat with each other live. |
| Dash, D. et al. [32] | 2020 | 7 Healthy 3 PALS | MEG | Decoding | Performance for PALS is lower than for healthy subjects but still significantly above chance level. PALS scored 94% on a 26–30 binary (yes/no) question task. |
| Geronimo A. et al. [33] | 2020 | 15 PMND 15 Caregivers | EEG (P300) | TeleBCI to operate a virtual keyboard | Setup and spelling times improved between sessions; 7 PMND reached proficiency and used the advanced notepad speller to communicate. High performers increased P300 spelling accuracy by 2.6% per session. PMND reported the EEG demanded more time, space, and stamina than expected. |
| Peters B. et al. [26] | 2020 | 2 PALS | EEG (SSVEP) & Eye-Tracking | Multimodal/Combinatory controls | SSVEP BCI outperformed eye-tracking for shuffle-spell typing in advanced (LIS) PALS. Fatigue and performance drop-off can occur. |
| Rocha, LAA. et al. [51] | 2020 | 10 Healthy 4 PALS | EMG & EOG | Communication & Selection | Selection times: healthy–300 ms (EMG), 550 ms (EOG), 450 ms (acceleration), 175 ms (ON/OFF sensors) vs. PALS–600 ms/280 ms (after 30 days) |
| Tonin A. et al. [44] | 2020 | 4 PALS (LIS) | EOG (auditory) | Communication and Interaction | A binary-based auditory speller enabled sentence-level communication in PALS with minimal eye movement (±200 μV to ± 40 μV). One PALS maintained use for over a year, while the capability for eye-tracking movement declined. |
| Bona S. et al. [39] | 2021 | 12 PALS | Augmented Reality with Integrated Eye-track | Environment Control | PALS showed improved system engagement and self-management, with gains in competence, adaptability, and self-esteem—indicating a positive psychosocial impact of the assistive device. Ocular symptoms in some patients may affect performance. |
| Manero AC. et al. [23] | 2022 | 4 PALS | EMG | Mobility Device Control | Wheelchair Skills Test with progressive improvement and time to complete/drive: 75% improvement in mobility/ conduction. Threshold-based |
| Peters B. et al. [42] | 2023 | 222 PALS | Low-tech (unaided communication) vs. High-tech (aid AAC) | Assessment of utility and usability | Higher score in CPIB in the high-tech group (mean increase: 4.75). PALS with anarthria (ALSFRS-R speech rating = 0) reported better participation under the all-methods condition than those who used residual speech in combination with non-speech methods. |
| Bettencourt. R. et al. [30] | 2024 | 5 Healthy 1 PALS (LIS) | EEG (P300) | Communication & Selection | 10-month follow-up, 90% online accuracy in one session vs. subsequent sessions average accuracy [56.4 ± 15.2%] |
| Cave, R. [52] | 2024 | 6 PALS | ASR | Communication & Interactions | 12-month follow-up. PALS reported lower-than-expected ASR accuracy when used in conversation and felt ASR captioning was only helpful in specific contexts. Future improvements might increase day-to-day usability. |
| Author | Year | Participants | AAC Modality | Local | Results |
|---|---|---|---|---|---|
| Luo S. et al. [53] | 2023 | 1 PALS | ECoG | Two 8 × 8 implants (motor and somatosensory areas) | Commands were reliably detected as the PALS navigated a communication board and controlled devices (room lights, streaming TV). Stable decoders with few (re)calibrations are required for home use. [arrays over the upper extremity and speech functions] |
| Willet FR. et al. [35] | 2023 | 1 PALS | ECoG | Two 8 × 8 Microarrays (area 6v), two 8 × 8 (area 44) | ALS reached 62 words per minute, markedly higher than other systems in use. Accuracy was lower, 9.1% word error rate on a 50-word vocabulary vs. 23.8% for 125,000-words. [3.2 mm arrays] |
| Angrick M. et al. [29] | 2024 | 1 PALS | ECoG | Two 8 × 8 Electrode Arrays (Sensorimotor Areas) | An RNN-based pipeline identified, decoded, and synthesised speech from ciBCI signals recorded from motor, premotor, and somatosensory areas, achieving 80% word intelligibility by human listeners. Training used an initial learning rate of 0.001. [arrays over face, tongue, and upper limb regions representations] |
| Candrea DN. et al. [31] | 2024 | 1 PALS | ECoG | Two 8 × 8 Subdural Grids (Sensoriomotor Cortex) | Median spelling rate of 10.2 characters per minute. Low subjective workload was assessed by NAS-TLX scores (mental demand, physical, temporal and performance). [36.6 mm × 33.1 mm, over representations for speech and upper extremity movements in the left hemisphere] |
| Card, N. et al. [34] | 2024 | 1 PALS | ECoG | 4 Microelectrode Arrays (left ventral precentral gyrus) | Decode and attempt to speak with an accuracy of 99.6% (50 words vocabulary) vs. after training, 97.5% (125,000 words, rate of approximately 32 words per min, with the use of text-to-speech software and pre-recorded voice) [3.2 × 3.2 mm in size and electrode depth 1.5 mm] |
| Wyse-Sookoo et al. [36] | 2024 | 1 PALS | ECoG | Two 64-channel grids (ventral sensorimotor cortex) | After an initial increase in signal strength during the first 5 months, high gamma responses remained stable for at least 12 months [36.66 mm × 33.1 mm, 8 × 8 configuration]. |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AAC | Augmentative Alternative Communication |
| ALS | Amyotrophic lateral sclerosis |
| BCI | Brain Computer Interface |
| DPQ | Dynamic path wrapping |
| DTW | Dynamic time warping |
| EEG | Electroencephalography |
| ECoG | Electrocorticographic |
| EMG | Electromyography |
| EOG | Electrooculogram |
| PALS | People with amyotrophic lateral sclerosis |
| QoL | Quality of Life |
| SWLDA | Stepwise linear discriminant analysis |
| SVM | Support Vector Machine |
| TLIS/LIS | Total locked-in syndrome/locked-in syndrome |
| VEM | Voluntary eye blink |
References
- Hardiman, O.; Al-Chalabi, A.; Chio, A.; Corr, E.M.; Logroscino, G.; Robberecht, W.; Shaw, P.J.; Simmons, Z.; van den Berg, L.H. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Primers 2017, 3, 17071. [Google Scholar] [CrossRef]
- Chiò, A.; Mazzini, L.; D’Alfonso, S.; Corrado, L.; Canosa, A.; Moglia, C.; Manera, U.; Bersano, E.; Brunetti, M.; Barberis, M.; et al. The multistep hypothesis of ALS revisited: The role of genetic mutations. Neurology 2018, 91, e635–e642. [Google Scholar] [CrossRef]
- Van Damme, P.; Al-Chalabi, A.; Andersen, P.M.; Chiò, A.; Couratier, P.; De Carvalho, M.; Hardiman, O.; Kuźma-Kozakiewicz, M.; Ludolph, A.; McDermott, C.J.; et al. European Academy of Neurology (EAN) guideline on the management of amyotrophic lateral sclerosis in collaboration with European Reference Network for Neuromuscular Diseases (ERN EURO-NMD). Eur. J. Neurol. 2024, 31, e16264. [Google Scholar] [CrossRef]
- Bjelica, B.; Petri, S. Narrative review of diagnosis, management and treatment of dysphagia and sialorrhea in amyotrophic lateral sclerosis. J. Neurol. 2024, 271, 6508–6513. [Google Scholar] [CrossRef] [PubMed]
- Abrahams, S. Neuropsychological impairment in amyotrophic lateral sclerosis-frontotemporal spectrum disorder. Nat. Rev. Neurol. 2023, 19, 655–667. [Google Scholar] [CrossRef] [PubMed]
- Chiaramonte, R.; Bonfiglio, M. Acoustic analysis of voice in bulbar amyotrophic lateral sclerosis: A systematic review and meta-analysis of studies. Logop. Phoniatr. Vocol. 2020, 45, 151–163. [Google Scholar] [CrossRef]
- Makkonen, T.; Ruottinen, H.; Puhto, R.; Helminen, M.; Palmio, J. Speech deterioration in amyotrophic lateral sclerosis (ALS) after manifestation of bulbar symptoms. Int. J. Lang. Commun. Disord. 2018, 53, 385–392. [Google Scholar] [CrossRef]
- Londral, A. Assistive Technologies for Communication Empower Patients with ALS to Generate and Self-Report Health Data. Front. Neurol. 2022, 13, 867567. [Google Scholar] [CrossRef] [PubMed]
- Beukelman, D.; Fager, S.; Nordness, A. Communication Support for People with ALS. Neurol. Res. Int. 2011, 2011, 714693. [Google Scholar] [CrossRef]
- Gonçalves, F.; Teixeira, M.I.; Rego, F.; Magalhães, B. The role of spiritual care management—Needs and resources in people with amyotrophic lateral sclerosis: Insights from a mixed-methods study. Palliat. Support. Care 2025, 23, e111. [Google Scholar] [CrossRef]
- Gonçalves, F.; Magalhães, B. Effects of prolonged interruption of rehabilitation routines in amyotrophic lateral sclerosis patients. Palliat. Support. Care 2022, 20, 369–374. [Google Scholar] [CrossRef]
- Linse, K.; Aust, E.; Joos, M.; Hermann, A. Communication Matters-Pitfalls and Promise of Hightech Communication Devices in Palliative Care of Severely Physically Disabled Patients with Amyotrophic Lateral Sclerosis. Front. Neurol. 2018, 9, 603. [Google Scholar] [CrossRef] [PubMed]
- Fried-Oken, M.; Mooney, A.; Peters, B. Supporting communication for patients with neurodegenerative disease. NeuroRehabilitation 2015, 37, 69–87. [Google Scholar] [CrossRef] [PubMed]
- McCane, L.M.; Sellers, E.W.; McFarland, D.J.; Mak, J.N.; Carmack, C.S.; Zeitlin, D.; Wolpaw, J.R.; Vaughan, T.M. Brain-computer interface (BCI) evaluation in people with amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Front. Degener. 2014, 15, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Bloch, S. Anticipatory other-completion of augmentative and alternative communication talk: A conversation analysis study. Disabil. Rehabil. 2011, 33, 261–269. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; Al, E. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Munn, Z.; Stone, J.C.; Aromataris, E.; Klugar, M.; Sears, K.; Leonardi-Bee, J.; Barker, T.H. Assessing the risk of bias of quantitative analytical studies: Introducing the vision for critical appraisal within JBI systematic reviews. JBI Evid. Synth. 2023, 21, 467–471. [Google Scholar] [CrossRef]
- Spataro, R.; Ciriacono, M.; Manno, C.; La Bella, V. The eye-tracking computer device for communication in amyotrophic lateral sclerosis. Acta Neurol. Scand. 2014, 130, 40–45. [Google Scholar] [CrossRef]
- Rahnama-ye-Moqaddam, R.; Vahdat-Nejad, H. Designing a pervasive eye movement-based system for ALS and paralyzed patients. In Proceedings of the 2015 5th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 29 October 2015; pp. 218–221. [Google Scholar] [CrossRef]
- Chang, W.D.; Cha, H.S.; Kim, D.Y.; Kim, S.H.; Im, C.H. Development of an electrooculogram-based eye-computer interface for communication of individuals with amyotrophic lateral sclerosis. J. Neuroeng. Rehabil. 2017, 14, 89. [Google Scholar] [CrossRef]
- Kim, D.Y.; Han, C.-H.; Im, C.-H. Development of an electrooculogram-based human-computer interface using involuntary eye movement by spatially rotating sound for communication of locked-in patients. Sci. Rep. 2018, 8, 9505. [Google Scholar] [CrossRef]
- Wang, Y.L.; Su, A.W.Y.; Han, T.Y.; Lin, C.L.; Hsu, L.C. EMG based rehabilitation systems—Approaches for ALS patients in different stages. In Proceedings of the 2015 IEEE International Conference on Multimedia and Expo (ICME), Torino, Italy, 29 June–3 July 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Manero, A.C.; McLinden, S.L.; Sparkman, J.; Oskarsson, B. Evaluating surface EMG control of motorized wheelchairs for amyotrophic lateral sclerosis patients. J. Neuroeng. Rehabil. 2022, 19, 88. [Google Scholar] [CrossRef] [PubMed]
- McCane, L.M.; Heckman, S.M.; McFarland, D.J.; Townsend, G.; Mak, J.N.; Sellers, E.W.; Zeitlin, D.; Tenteromano, L.M.; Wolpaw, J.R.; Vaughan, T.M. P300-based brain-computer interface (BCI) event-related potentials (ERPs): People with amyotrophic lateral sclerosis (ALS) vs. age-matched controls. Clin. Neurophysiol. 2015, 126, 2124–2131. [Google Scholar] [CrossRef]
- Nijboer, F.; Sellers, E.W.; Mellinger, J.; Jordan, M.A.; Matuz, T.; Furdea, A.; Halder, S.; Mochty, U.; Krusienski, D.J.; Vaughan, T.M.; et al. A P300-based brain–computer interface for people with amyotrophic lateral sclerosis. Clin. Neurophysiol. 2008, 119, 1909–1916. [Google Scholar] [CrossRef]
- Peters, B.; Bedrick, S.; Dudy, S.; Eddy, B.; Higger, M.; Kinsella, M.; McLaughlin, D.; Memmott, T.; Oken, B.; Quivira, F.; et al. SSVEP BCI and Eye Tracking Use by Individuals with Late-Stage ALS and Visual Impairments. Front. Hum. Neurosci. 2020, 14, 595890. [Google Scholar] [CrossRef]
- Jarosiewicz, B.; Sarma, A.A.; Bacher, D.; Masse, N.Y.; Simeral, J.D.; Sorice, B.; Oakley, E.M.; Blabe, C.; Pandarinath, C.; Gilja, V.; et al. Virtual typing by people with tetraplegia using a self-calibrating intracortical brain-computer interface. Sci. Transl. Med. 2015, 7, 313ra179. [Google Scholar] [CrossRef]
- Milekovic, T.; Sarma, A.A.; Bacher, D.; Simeral, J.D.; Saab, J.; Pandarinath, C.; Sorice, B.L.; Blabe, C.; Oakley, E.M.; Tringale, K.R.; et al. Stable long-term BCI-enabled communication in ALS and locked-in syndrome using LFP signals. J. Neurophysiol. 2018, 120, 343–360. [Google Scholar] [CrossRef] [PubMed]
- Angrick, M.; Luo, S.; Rabbani, Q.; Candrea, D.N.; Shah, S.; Milsap, G.W.; Anderson, W.S.; Gordon, C.R.; Rosenblatt, K.R.; Clawson, L.; et al. Online speech synthesis using a chronically implanted brain–computer interface in an individual with ALS. Sci. Rep. 2024, 14, 9617. [Google Scholar] [CrossRef]
- Bettencourt, R.; Castelo-Branco, M.; Gonçalves, E.; Nunes, U.J.; Pires, G. Comparing Several P300-Based Visuo-Auditory Brain-Computer Interfaces for a Completely Locked-in ALS Patient: A Longitudinal Case Study. Appl. Sci. 2024, 14, 3464. [Google Scholar] [CrossRef]
- Candrea, D.N.; Shah, S.; Luo, S.; Angrick, M.; Rabbani, Q.; Coogan, C.; Milsap, G.W.; Nathan, K.C.; Wester, B.A.; Anderson, W.S.; et al. A click-based electrocorticographic brain-computer interface enables long-term high-performance switch scan spelling. Commun. Med. 2024, 4, 207. [Google Scholar] [CrossRef]
- Dash, D.; Ferrari, P.; Babajani-Feremi, A.; Borna, A.; Schwindt, P.D.D.; Wang, J. Magnetometers vs Gradiometers for Neural Speech Decoding. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2021, 2021, 6543–6546. [Google Scholar] [CrossRef] [PubMed]
- Geronimo, A.; Simmons, Z. TeleBCI: Remote user training, monitoring, and communication with an evoked-potential brain-computer interface. Brain Comput. Interfaces 2020, 7, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Card, N.S.; Wairagkar, M.; Iacobacci, C.; Hou, X.; Singer-Clark, T.; Willett, F.R.; Kunz, E.M.; Fan, C.; Nia, M.V.; Deo, D.R.; et al. An Accurate and Rapidly Calibrating Speech Neuroprosthesis. N. Engl. J. Med. 2024, 391, 609–618. [Google Scholar] [CrossRef]
- Willett, F.R.; Kunz, E.M.; Fan, C.; Avansino, D.T.; Wilson, G.H.; Choi, E.Y.; Kamdar, F.; Glasser, M.F.; Hochberg, L.R.; Druckmann, S.; et al. A high-performance speech neuroprosthesis. Nature 2023, 620, 1031–1036. [Google Scholar] [CrossRef]
- Wyse-Sookoo, K.; Luo, S.; Candrea, D.; Schippers, A.; Tippett, D.C.; Wester, B.; Fifer, M.; Vansteensel, M.J.; Ramsey, N.F.; Crone, N.E. Stability of ECoG high gamma signals during speech and implications for a speech BCI system in an individual with ALS: A year-long longitudinal study. J. Neural Eng. 2024, 21, 046016. [Google Scholar] [CrossRef] [PubMed]
- Geronimo, A.; Simmons, Z.; Schiff, S.J. Performance predictors of brain-computer interfaces in patients with amyotrophic lateral sclerosis. J. Neural Eng. 2016, 13, 026002. [Google Scholar] [CrossRef]
- Pasqualotto, E.; Matuz, T.; Federici, S.; Ruf, C.A.; Bartl, M.; Olivetti Belardinelli, M.; Birbaumer, N.; Halder, S. Usability and Workload of Access Technology for People with Severe Motor Impairment: A Comparison of Brain-Computer Interfacing and Eye Tracking. Neurorehabilit. Neural Repair 2015, 29, 950–957. [Google Scholar] [CrossRef]
- Bona, S.; Donvito, G.; Cozza, F.; Malberti, I.; Vaccari, P.; Lizio, A.; Greco, L.; Carraro, E.; Sansone, V.A.; Lunetta, C. The development of an augmented reality device for the autonomous management of the electric bed and the electric wheelchair for patients with amyotrophic lateral sclerosis: A pilot study. Disabil. Rehabil. Assist. Technol. 2021, 16, 513–519. [Google Scholar] [CrossRef]
- Caron, J.; Light, J. “My World Has Expanded Even Though I’m Stuck at Home”: Experiences of Individuals with Amyotrophic Lateral Sclerosis Who Use Augmentative and Alternative Communication and Social Media. Am. J. Speech Lang. Pathol. 2015, 24, 680–695. [Google Scholar] [CrossRef]
- Caligari, M.; Godi, M.; Guglielmetti, S.; Franchignoni, F.; Nardone, A. Eye tracking communication devices in amyotrophic lateral sclerosis: Impact on disability and quality of life. Amyotroph. Lateral Scler. Front. Degener. 2013, 14, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Peters, B.; Wiedrick, J.; Baylor, C. Effects of Aided Communication on Communicative Participation for People with Amyotrophic Lateral Sclerosis. Am. J. Speech Lang. Pathol. 2023, 32, 1450–1465. [Google Scholar] [CrossRef]
- Guy, V.; Soriani, M.H.; Bruno, M.; Papadopoulo, T.; Desnuelle, C.; Clerc, M. Brain computer interface with the P300 speller: Usability for disabled people with amyotrophic lateral sclerosis. Ann. Phys. Rehabil. Med. 2018, 61, 5–11. [Google Scholar] [CrossRef]
- Tonin, A.; Jaramillo-Gonzalez, A.; Rana, A.; Khalili-Ardali, M.; Birbaumer, N.; Chaudhary, U. Auditory Electrooculogram-based Communication System for ALS Patients in Transition from Locked-in to Complete Locked-in State. Sci. Rep. 2020, 10, 8452. [Google Scholar] [CrossRef]
- Hori, J.; Sakano, K.; Miyakawa, M.; Saitoh, Y. Eye Movement Communication Control System Based on EOG and Voluntary Eye Blink. In Computers Helping People with Special Needs; Miesenberger, K., Klaus, J., Zagler, W.L., Karshmer, A.I., Eds.; Springer: Berlin/Heidelberg, Germnay, 2006; pp. 950–953. [Google Scholar]
- Morris, M.A.; Dudgeon, B.J.; Yorkston, K. A qualitative study of adult AAC users’ experiences communicating with medical providers. Disabil. Rehabil. Assist. Technol. 2013, 8, 472–481. [Google Scholar] [CrossRef]
- Mugler, E.M.; Ruf, C.A.; Halder, S.; Bensch, M.; Kubler, A. Design and implementation of a P300-based brain-computer interface for controlling an internet browser. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Lancioni, G.E.; Simone, I.L.; De Caro, M.F.; Singh, N.N.; O’Reilly, M.F.; Sigafoos, J.; Ferlisi, G.; Zullo, V.; Schirone, S.; Denitto, F.; et al. Assisting persons with advanced amyotrophic lateral sclerosis in their leisure engagement and communication needs with a basic technology-aided program. NeuroRehabilitation 2015, 36, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Poletti, B.; Carelli, L.; Solca, F.; Lafronza, A.; Pedroli, E.; Faini, A.; Ticozzi, N.; Ciammola, A.; Meriggi, P.; Cipresso, P.; et al. An eye-tracker controlled cognitive battery: Overcoming verbal-motor limitations in ALS. J. Neurol. 2017, 264, 1136–1145. [Google Scholar] [CrossRef] [PubMed]
- Nuyujukian, P.; Albites Sanabria, J.; Saab, J.; Pandarinath, C.; Jarosiewicz, B.; Blabe, C.H.; Franco, B.; Mernoff, S.T.; Eskandar, E.N.; Simeral, J.D.; et al. Cortical control of a tablet computer by people with paralysis. PLoS ONE 2018, 13, e0204566. [Google Scholar] [CrossRef] [PubMed]
- Rocha, L.A.A.; Naves, E.L.M.; Morére, Y.; de Sa, A.A.R. Multimodal interface for alternative communication of people with motor disabilities. Res. Biomed. Eng. 2020, 36, 21–29. [Google Scholar] [CrossRef]
- Cave, R. How People Living with Amyotrophic Lateral Sclerosis Use Personalized Automatic Speech Recognition Technology to Support Communication. J. Speech Lang. Hear. Res. 2024, 67, 4186–4202. [Google Scholar] [CrossRef]
- Luo, S.; Angrick, M.; Coogan, C.; Candrea, D.N.; Wyse-Sookoo, K.; Shah, S.; Rabbani, Q.; Milsap, G.W.; Weiss, A.R.; Anderson, W.S.; et al. Stable Decoding from a Speech BCI Enables Control for an Individual with ALS without Recalibration for 3 Months. Adv. Sci. 2023, 10, 2304853. [Google Scholar] [CrossRef]
- Fernandes, F.; Barbalho, I.; Bispo Júnior, A.; Alves, L.; Nagem, D.; Lins, H.; Arrais Júnior, E.; Coutinho, K.D.; Morais, A.H.F.; Santos, J.P.Q.; et al. Digital Alternative Communication for Individuals with Amyotrophic Lateral Sclerosis: What We Have. J. Clin. Med. 2023, 12, 5235. [Google Scholar] [CrossRef]
- Dias, C.; Rodrigues, I.T.; Gonçalves, H.; Duarte, I. Communication strategies for adults in palliative care: The speech-language therapists’ perspective. BMC Palliat. Care 2024, 23, 49. [Google Scholar] [CrossRef]
- Gonçalves, F.; Teixeira, M.I.; Magalhães, B. The role of spirituality in people with amyotrophic lateral sclerosis and their caregivers: Scoping review. Palliat. Support. Care 2023, 21, 914–924. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, A.; Xia, X.; Zhang, S.; Li, H.; Wang, J.; Gao, S. A Visual Feedback Supported Intelligent Assistive Technique for Amyotrophic Lateral Sclerosis Patients. Adv. Intell. Syst. 2022, 4, 2100097. [Google Scholar] [CrossRef]
- Larradet, F.; Barresi, G.; Mattos, L.S. Affective Communication Enhancement System for Locked-In Syndrome Patients. In Universal Access in Human-Computer Interaction. Design Approaches and Supporting Technologies; Antona, M., Stephanidis, C., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 143–156. [Google Scholar]
- Vansteensel, M.J.; Klein, E.; van Thiel, G.; Gaytant, M.; Simmons, Z.; Wolpaw, J.R.; Vaughan, T.M. Towards clinical application of implantable brain–computer interfaces for people with late-stage ALS: Medical and ethical considerations. J. Neurol. 2023, 270, 1323–1336. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.L.; Saredakis, D.; Hutchinson, A.D.; Crawford, G.B.; Loetscher, T. Virtual Reality in Palliative Care: A Systematic Review. Healthcare 2022, 10, 1222. [Google Scholar] [CrossRef]
- Penedos-Santiago, E.; Simões, S.; Amado, P.; Giesteira, B. Drawing for Social Re-Connectivity Through Collaborative and Digital Environments. Preliminary Drawing Activities. In Perspectives and Trends in Education and Technology; Abreu, A., Carvalho, J.V., Mesquita, A., Sousa Pinto, A., Mendonça Teixeira, M., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 242–247. [Google Scholar]
- Huang, Y.; Deng, C.; Peng, M.; Hao, Y. Experiences and perceptions of palliative care patients receiving virtual reality therapy: A meta-synthesis of qualitative studies. BMC Palliat. Care 2024, 23, 182. [Google Scholar] [CrossRef]
- Mott, M.; Williams, S.; Wobbrock, J.; Morris, M. Improving Dwell-Based Gaze Typing with Dynamic, Cascading Dwell Times. In Proceedings of the CHI ‘17: 2017 CHI Conference on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017. [Google Scholar]
- Akcakaya, M.; Peters, B.; Moghadamfalahi, M.; Mooney, A.R.; Orhan, U.; Oken, B.; Erdogmus, D.; Fried-Oken, M. Noninvasive Brain–Computer Interfaces for Augmentative and Alternative Communication. IEEE Rev. Biomed. Eng. 2014, 7, 31–49. [Google Scholar] [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Gonçalves, F.; Fernandes, C.S.; Teixeira, M.I.; Melo, C.; Dias, C. Bridging Silence: A Scoping Review of Technological Advancements in Augmentative and Alternative Communication for Amyotrophic Lateral Sclerosis. Sclerosis 2026, 4, 2. https://doi.org/10.3390/sclerosis4010002
Gonçalves F, Fernandes CS, Teixeira MI, Melo C, Dias C. Bridging Silence: A Scoping Review of Technological Advancements in Augmentative and Alternative Communication for Amyotrophic Lateral Sclerosis. Sclerosis. 2026; 4(1):2. https://doi.org/10.3390/sclerosis4010002
Chicago/Turabian StyleGonçalves, Filipe, Carla S. Fernandes, Margarida I. Teixeira, Cláudia Melo, and Cátia Dias. 2026. "Bridging Silence: A Scoping Review of Technological Advancements in Augmentative and Alternative Communication for Amyotrophic Lateral Sclerosis" Sclerosis 4, no. 1: 2. https://doi.org/10.3390/sclerosis4010002
APA StyleGonçalves, F., Fernandes, C. S., Teixeira, M. I., Melo, C., & Dias, C. (2026). Bridging Silence: A Scoping Review of Technological Advancements in Augmentative and Alternative Communication for Amyotrophic Lateral Sclerosis. Sclerosis, 4(1), 2. https://doi.org/10.3390/sclerosis4010002

