Validity and Reliability of a Smartphone Application Versus 2D Software for Joint Range of Motion Measurement: A Cross-Sectional Validation Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Study Settings
4.3. Participants
4.4. Sample Size Calculation
4.5. Data Collection and Organization
4.6. Data Analysis
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Musculoskeletal Health. Available online: https://www.who.int/news-room/fact-sheets/detail/musculoskeletal-conditions (accessed on 23 April 2024).
- Cieza, A.; Causey, K.; Kamenov, K.; Hanson, S.W.; Chatterji, S.; Vos, T. Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 2006–2017. [Google Scholar] [CrossRef]
- Weyh, C.; Pilat, C.; Krüger, K. Musculoskeletal disorders and level of physical activity in welders. Occup. Med. 2020, 70, 586–592. [Google Scholar] [CrossRef]
- Capone, A.C.; Parikh, P.M.; Gatti, M.E.; Davidson, B.J.; Davison, S.P. Occupational injury in plastic surgeons. Plast. Reconstr. Surg. 2010, 125, 1555–1561. [Google Scholar] [CrossRef]
- Samuel, A.C. Physiotherapy for Musculoskeletal Problems in Primary Health Care. J. Yoga Phys. Ther. 2021. [Google Scholar] [CrossRef]
- García-Rubio, J.; Pino, J.; Olivares, P.R.; Ibáñez, S.J. Validity and reliability of the WIMUTM inertial device for the assessment of joint angulations. Int. J. Environ. Res. Public Health 2020, 17, 193. [Google Scholar] [CrossRef]
- Chung, P.Y.M.; Ng, G.Y.F. Comparison between an accelerometer and a three-dimensional motion analysis system for the detection of movement. Physiotherapy 2012, 98, 256–259. [Google Scholar] [CrossRef]
- Cunha, A.B.; Babik, I.; Harbourne, R.; Cochran, N.J.; Stankus, J.; Szucs, K.; Lobo, M.A. Assessing the Validity and Reliability of a New Video Goniometer App for Measuring Joint Angles in Adults and Children. Arch. Phys. Med. Rehabil. 2020, 101, 275–282. [Google Scholar] [CrossRef]
- Baude, M.; Hutin, E.; Gracies, J.M. A Bidimensional System of Facial Movement Analysis Conception and Reliability in Adults. BioMed Res. Int. 2015, 812961. [Google Scholar] [CrossRef]
- Littrell, M.E.; Chang, Y.H.; Selgrade, B.P. Development and assessment of a low-cost clinical gait analysis system. J. Appl. Biomech. 2018, 34, 503–508. [Google Scholar] [CrossRef]
- Balsalobre-Fernández, C.; Tejero-González, C.M.; Del Campo-Vecino, J.; Bavaresco, N. The concurrent validity and reliability of a low-cost, high-speed camera-based method for measuring the flight time of vertical jumps. J. Strength Cond. Res. 2014, 28, 528–533. [Google Scholar] [CrossRef]
- Moral-Muñoz, J.A.; Esteban-Moreno, B.; Arroyo-Morales, M.; Cobo, M.J.; Herrera-Viedma, E. Agreement between face-to-face and free software video analysis for assessing hamstring flexibility in adolescents. J. Strength Cond. Res. 2015, 29, 2661–2665. [Google Scholar] [CrossRef] [PubMed]
- Sabino, G.S.; de Souza, L.A.F.; Ribeiro, T.; Nascimento, D.H.A.; Vimieiro, C.B.S.; Resende, R.A. Validity and reliability of a smartphone application for knee posture quantification and the effects of external markers on the precision of this measure. J. Bodyw. Mov. Ther. 2021, 28, 42–48. [Google Scholar] [CrossRef]
- Charlton, P.C.; Mentiplay, B.F.; Pua, Y.H.; Clark, R.A. Reliability and concurrent validity of a Smartphone, bubble inclinometer and motion analysis system for measurement of hip joint range of motion. J. Sci. Med. Sport 2015, 18, 262–267. [Google Scholar] [CrossRef]
- Santos, R.A.D.; Derhon, V.; Brandalize, M.; Brandalize, D.; Rossi, L.P. Evaluation of knee range of motion: Correlation between measurements using a universal goniometer and a smartphone goniometric application. J. Bodyw. Mov. Ther. 2017, 21, 699–703. [Google Scholar] [CrossRef]
- Krause, D.A.; Boyd, M.S.; Hager, A.N.; Smoyer, E.C.; Thompson, A.T.; Hollman, J.H. Reliability and accuracy of a goniometer mobile device application for video measurement of the functional movement screen deep squat test. Int. J. Sports Phys. Ther. 2015, 10, 37–44. [Google Scholar]
- Vauclair, F.; Aljurayyan, A.; Abduljabbar, F.H.; Barimani, B.; Goetti, P.; Houghton, F.; Harvey, E.J.; Rouleau, D.M. The smartphone inclinometer: A new tool to determine elbow range of motion? Eur. J. Orthop. Surg. Traumatol. 2018, 28, 415–421. [Google Scholar] [CrossRef]
- UIT. L’Internet Est Devenu Plus Abordable Et S’est Généralisé Mais Les Plus Pauvres Restent Exclus, Selon l’UIT. Available online: https://news.un.org/fr/story/2022/12/1130252 (accessed on 29 April 2024).
- Ghorbani, F.; Kamyab, M.; Azadinia, F. Smartphone Applications as a Suitable Alternative to CROM Device and Inclinometers in Assessing the Cervical Range of Motion in Patients with Nonspecific Neck Pain. J. Chiropr. Med. 2020, 19, 38–48. [Google Scholar] [CrossRef]
- Kortam, S.M.M.; Hussein, Z.A.; Refaat, S.M. Uses of Smart Phones Application on Physical Therapy for Pediatric Evaluation: Systematic Review. Med. J. Cairo Univ. 2020, 88, 1725–1731. [Google Scholar] [CrossRef]
- Hahn, S.; Kröger, I.; Willwacher, S.; Augat, P. Reliability and validity varies among smartphone apps for range of motion measurements of the lower extremity: A systematic review. Biomed. Tech. 2021, 66, 537–555. [Google Scholar] [CrossRef]
- DrGoniometer (Version 3.0.1). 2010. Available online: https://apps.apple.com/us/app/drgoniometer/id362356791 (accessed on 21 April 2023).
- Hip ROM Tester (Version1.1). 2010. Available online: https://play.google.com/store/apps (accessed on 21 April 2023).
- Ishii, K.; Oka, H.; Honda, Y.; Oguro, D.; Konno, Y.; Kumeta, K.; Nishihara, S.; Matsuyama, H.; Kaneko, I.; Takeuchi, Y.; et al. Accuracy and reliability of a smartphone application for measuring the knee joint angle. J. Phys. Ther. Sci. 2021, 33, 417–422. [Google Scholar] [CrossRef]
- PhysioMaster (Version2.1.7). 2021. Available online: https://play.google.com/store/apps/details?id=com.trinuslab.physiomaster&hl=pt_PT (accessed on 21 April 2023).
- Derhon, V.; Santos, R.A.; Brandalize, M.; Brandalize, D.; Rossi, L.P. Intra- and Inter-Examiner Reliability in Angular Measurements of the Knee with a Smartphone Application. Hum. Mov. 2017, 18, 38–43. [Google Scholar] [CrossRef]
- Vohralik, S.L.; Bowen, A.R.; Burns, J.; Hiller, C.E.; Nightingale, E.J. Reliability and validity of a smartphone app to measure joint range. Am. J. Phys. Med. Rehabil. 2015, 94, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G. Measures of reliability in sports medicine and science. Sports Med. 2000, 30, 1–15. [Google Scholar] [CrossRef]
- Chaudhary, R.; Beaupré, L.A.; Johnston, D.W.C. Knee range of motion during the first two years after use of posterior cruciate-stabilizing or posterior cruciate-retaining total knee prostheses: A randomized clinical trial. J. Bone Jt. Surg. 2008, 90, 2579–2586. [Google Scholar] [CrossRef]
- Castle, H.; Kozak, K.; Sidhu, A.; Khan, R.J.; Haebich, S.; Bowden, V.; Fick, D.P.; Goonatillake, H. Smartphone technology: A reliable and valid measure of knee movement in knee replacement. Int. J. Rehabil. Res. 2018, 41, 152–158. [Google Scholar] [CrossRef]
- Mehta, S.P.; Barker, K.; Bowman, B.; Galloway, H.; Oliashirazi, N.; Oliashirazi, A. Reliability, Concurrent Validity, and Minimal Detectable Change for iPhone Goniometer App in Assessing Knee Range of Motion. J. Knee Surg. 2017, 30, 577–584. [Google Scholar] [CrossRef]
- Hancock, G.E.; Hepworth, T.; Wembridge, K. Accuracy and reliability of knee goniometry methods. J. Exp. Orthop. 2018, 5, 1–6. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Int. J. Nurs. Stud. 2010, 47, 931–936. [Google Scholar] [CrossRef]
- Boone, D.C.; Azen, S.P.; Lin, C.M.; Spence, C.; Baron, C.; Lee, L. Reliability of goniometric measurements. Phys. Ther. 1978, 58, 1355–1360. [Google Scholar] [CrossRef]
- Bovens, A.M.P.; Van Baak, M.A.; Vrencken, J.G.P.M.; Wijnen, J.A.G.; Verstappen, F.T.J. Variability and reliability of joint measurements. Am. J. Sports Med. 1990, 18, 58–63. [Google Scholar] [CrossRef]
- Edwards, J.Z.; Greene, K.A.; Davis, R.S.; Kovacik, M.W.; Noe, D.A.; Askew, M.J. Measuring flexion in knee arthroplasty patients. J. Arthroplast. 2004, 19, 369–372. [Google Scholar] [CrossRef] [PubMed]
- Ockendon, M.; Gilbert, R.E. Validation of a novel smartphone accelerometer-based knee goniometer. J. Knee Surg. 2012, 25, 341–346. [Google Scholar] [CrossRef] [PubMed]
- St-Pierre, M.O.; Sobczak, S.; Fontaine, N.; Saadé, N.; Boivin, K. Quantification and Reliability of Hip Internal Rotation and the FADIR Test in Supine Position Using a Smartphone Application in an Asymptomatic Population. J. Manip. Physiol. Ther. 2020, 43, 620–626. [Google Scholar] [CrossRef]
- Marques, A.P. Manual de Goniometria; Manole: São Paulo, Brazil, 2003. [Google Scholar]
- Abed, M.A.; Youssef, E.F.; Ali, D.M.; Abdellah, N.A. Validity and Reliability of Smartphone Goniometer for Assessment of Joint Position Sense in Patellofemoral Pain Syndrome. Egypt. J. Phys. Ther. 2024, 20, 1–8. [Google Scholar] [CrossRef]
- Wimmer, M.A.; Nechtow, W.; Schwenke, T.; Moisio, K.C. Knee Flexion and Daily Activities in Patients following Total Knee Replacement: A Comparison with ISO Standard 14243. BioMed Res. Int. 2015, 2015, 157541. [Google Scholar] [CrossRef]
- Pereira, L.C.; Rwakabayiza, S.; Lécureux, E.; Jolles, B.M. Reliability of the Knee Smartphone-Application Goniometer in the Acute Orthopedic Setting. J. Knee Surg. 2017, 30, 223–230. [Google Scholar] [CrossRef]
- Arfin, W.N. Sample Size Calculator. Available online: https://wnarifin.github.io/ssc/ssicc.html (accessed on 23 April 2024).
- Walter, S.D.; Eliasziw, M.; Donner, A. Sample size and optimal designs for reliability studies. Stat Med. 1998, 17, 101–110. [Google Scholar] [CrossRef]
- Bandy, W.D.; Irion, J.M.; Briggler, M. The effect of time and frequency of static stretching on flexibility of the hamstring muscles. Phys Ther. 1997, 77, 1090–1096. [Google Scholar] [CrossRef]
- Schober, P.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Jamovi. The Jamovi Project. 2021. Available online: https://www.jamovi.org (accessed on 23 April 2024).
Participants (n = 29) | |
---|---|
Female | 22 |
Male | 7 |
Age (years) | 22 ± 2.9 |
Height (m) | 1.68 ± 0.07 |
Weight (kg) | 64.3 ± 11 |
Evaluators | Kinovea | |||||||
---|---|---|---|---|---|---|---|---|
AV1 | AV2 | OB1 (AV1) | OB2 (AV1) | OB3 (AV2) | OB1 (AV2) | OB2 (AV2) | OB3 (AV2) | |
Mean ± Standard deviation | 59 ± 7.47 | 57.9 ± 6.98 | 52.3 ± 7.14 | 52.3 ± 7.12 | 52.1 ± 7.09 | 50.4 ± 7.47 | 50.6 ± 6.84 | 50.4 ± 7.03 |
Evaluator 1 | Evaluator 2 | |||||
---|---|---|---|---|---|---|
ICC | 95% CI | r | ICC | 95% CI | r | |
OB1 | 0.814 | −0.0556; 0.957 | 0.973 * | 0.729 | −0.114; 0.929 | 0.921 * |
OB2 | 0.812 | −0.528; 0.956 | 0.974 * | 0.746 | −0.114; 0.934 | 0.926 * |
OB3 | 0.802 | −0.583; 0.953 | 0.970 * | 0.731 | −0.134; 0.928 | 0.908 * |
ICC | 95% CI | CV (%) | SEM (°) | r | |
---|---|---|---|---|---|
OB1 vs. OB2 | 0.998 | 0.996; 0.999 | 0.94 | 0.4896 | 0.995 * |
OB1 vs. OB3 | 0.995 | 0.991; 0.997 | 1.39 | 0.7256 | 0.990 * |
OB2 vs. OB3 | 0.995 | 0.992; 0.997 | 1.28 | 0.6694 | 0.991 * |
ICC | 95% CI | CV (%) | SEM (°) | r | |
---|---|---|---|---|---|
OB1 vs. OB2 | 0.996 | 0.993; 0.998 | 1.15 | 0.5793 | 0.993 * |
OB1 vs. OB3 | 0.995 | 0.992; 0.997 | 1.31 | 0.662 | 0.991 * |
OB2 vs. OB3 | 0.995 | 0.991; 0.997 | 1.34 | 0.6774 | 0.991 * |
ICC | 95% CI | CV (%) | SEM (°) | r | |
---|---|---|---|---|---|
AV1 vs. AV2 | 0.898 | 0.882; 0.941 | 5.18 | 3.0282 | 0.82 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, I.; Gunot, M.; Dias, A. Validity and Reliability of a Smartphone Application Versus 2D Software for Joint Range of Motion Measurement: A Cross-Sectional Validation Study. Muscles 2025, 4, 8. https://doi.org/10.3390/muscles4010008
Martins I, Gunot M, Dias A. Validity and Reliability of a Smartphone Application Versus 2D Software for Joint Range of Motion Measurement: A Cross-Sectional Validation Study. Muscles. 2025; 4(1):8. https://doi.org/10.3390/muscles4010008
Chicago/Turabian StyleMartins, Inès, Misha Gunot, and Amândio Dias. 2025. "Validity and Reliability of a Smartphone Application Versus 2D Software for Joint Range of Motion Measurement: A Cross-Sectional Validation Study" Muscles 4, no. 1: 8. https://doi.org/10.3390/muscles4010008
APA StyleMartins, I., Gunot, M., & Dias, A. (2025). Validity and Reliability of a Smartphone Application Versus 2D Software for Joint Range of Motion Measurement: A Cross-Sectional Validation Study. Muscles, 4(1), 8. https://doi.org/10.3390/muscles4010008