Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,890)

Search Parameters:
Keywords = mobile phone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1406 KiB  
Proceeding Paper
Disaster-Based Mobile Learning System Using Technology Acceptance Model
by John A. Bacus
Eng. Proc. 2025, 103(1), 5; https://doi.org/10.3390/engproc2025103005 - 5 Aug 2025
Abstract
Recently, the usage of mobile phone-based games has increased due to the growing accessibility and convenience they provide. Using a descriptive-quantitative design, a disaster-based mobile application was developed in this study to enhance disaster literacy among the private senior high schools in science, [...] Read more.
Recently, the usage of mobile phone-based games has increased due to the growing accessibility and convenience they provide. Using a descriptive-quantitative design, a disaster-based mobile application was developed in this study to enhance disaster literacy among the private senior high schools in science, technology, engineering, and mathematics (STEM) education in Davao City, the Philippines. The developed application was provided together with survey questionnaires to 364 students randomly selected from different schools in Davao City usingF a simple random sampling method. The technology acceptance (TAM) model was used to explain how users accepted the new technology. The mobile application was designed with features in four disaster scenarios—fire, flood, volcano, and earthquake. The results revealed a high acceptance, with an average score of the perceived usefulness (PE) of 4.52, perceived ease of use (PEOU) of 4.44, and a behavioral intention (BI) of 4.12. The students accepted the application to enhance disaster risk reduction and management. Aligned with SDG 4 and SDG 11, the application can be used to equip users with the knowledge to respond to disasters and ensure community resilience. Full article
Show Figures

Figure 1

16 pages, 5519 KiB  
Article
The Performance of a Novel Automated Algorithm in Estimating Truckload Volume Based on LiDAR Data
by Mihai Daniel Niţă, Cătălin Cucu-Dumitrescu, Bogdan Candrea, Bogdan Grama, Iulian Iuga and Stelian Alexandru Borz
Forests 2025, 16(8), 1281; https://doi.org/10.3390/f16081281 - 5 Aug 2025
Abstract
Significant improvements in the forest-based industrial sector are expected due to increased digitalization; however, examples of practical implementations remain limited. This study explores the use of an automated algorithm to estimate truckload volumes based on 3D point cloud data acquired using two different [...] Read more.
Significant improvements in the forest-based industrial sector are expected due to increased digitalization; however, examples of practical implementations remain limited. This study explores the use of an automated algorithm to estimate truckload volumes based on 3D point cloud data acquired using two different LiDAR scanning platforms. This research compares the performance of a professional mobile laser scanning (MLS GeoSLAM) platform and a smartphone-based iPhone LiDAR system. A total of 48 truckloads were measured using a combination of manual, factory-based, and digital approaches. Accuracy was evaluated using standard error metrics, including the mean absolute error (MAE) and root mean square error (RMSE), with manual or factory references used as benchmarks. The results showed a strong correlation and no significant differences between the algorithmic and manual measurements when using the MLS platform (MAE = 2.06 m3; RMSE = 2.46 m3). For the iPhone platform, the results showed higher deviations and significant overestimation compared to the factory reference (MAE = 3.29 m3; RMSE = 3.60 m3). Despite these differences, the iPhone platform offers real-time acquisition and low-cost deployment. These findings highlight the trade-offs between precision and operational efficiency and support the adoption of automated measurement tools in timber supply chains. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

27 pages, 9910 KiB  
Article
Predicting the Next Location of Urban Individuals via a Representation-Enhanced Multi-View Learning Network
by Maoqi Lun, Peixiao Wang, Sheng Wu, Hengcai Zhang, Shifen Cheng and Feng Lu
ISPRS Int. J. Geo-Inf. 2025, 14(8), 302; https://doi.org/10.3390/ijgi14080302 - 2 Aug 2025
Viewed by 160
Abstract
Accurately predicting the next location of urban individuals is a central issue in human mobility research. Human mobility exhibits diverse patterns, requiring the integration of spatiotemporal contexts for location prediction. In this context, multi-view learning has become a prominent method in location prediction. [...] Read more.
Accurately predicting the next location of urban individuals is a central issue in human mobility research. Human mobility exhibits diverse patterns, requiring the integration of spatiotemporal contexts for location prediction. In this context, multi-view learning has become a prominent method in location prediction. Despite notable advances, current methods still face challenges in effectively capturing non-spatial proximity of regional preferences, complex temporal periodicity, and the ambiguity of location semantics. To address these challenges, we propose a representation-enhanced multi-view learning network (ReMVL-Net) for location prediction. Specifically, we propose a community-enhanced spatial representation that transcends geographic proximity to capture latent mobility patterns. In addition, we introduce a multi-granular enhanced temporal representation to model the multi-level periodicity of human mobility and design a rule-based semantic recognition method to enrich location semantics. We evaluate the proposed model using mobile phone data from Fuzhou. Experimental results show a 2.94% improvement in prediction accuracy over the best-performing baseline. Further analysis reveals that community space plays a key role in narrowing the candidate location set. Moreover, we observe that prediction difficulty is strongly influenced by individual travel behaviors, with more regular activity patterns being easier to predict. Full article
Show Figures

Figure 1

22 pages, 1929 KiB  
Article
Investigating Provincial Coupling Coordination Between Digital Infrastructure and Green Development in China
by Beibei Zhang, Zhenni Zhou, Juan Zheng, Zezhou Wu and Yan Liu
Buildings 2025, 15(15), 2724; https://doi.org/10.3390/buildings15152724 - 1 Aug 2025
Viewed by 213
Abstract
Digital technologies could facilitate green development by enhancing energy efficiency. However, existing research on coupling coordination between digital infrastructure and green development remains scarce. To fill this research gap, this study analyzes the spatio-temporal variations and barriers of coupling coordination. An evaluation index [...] Read more.
Digital technologies could facilitate green development by enhancing energy efficiency. However, existing research on coupling coordination between digital infrastructure and green development remains scarce. To fill this research gap, this study analyzes the spatio-temporal variations and barriers of coupling coordination. An evaluation index system is established and then the coupling relationship and the barrier factors between digital infrastructure and green development are analyzed. A provincial analysis is conducted by using data from China. The results in the study indicate (1) coupling coordination between digital infrastructure and green development exhibits a relatively low state, characterized by an overall upward trend; (2) noteworthy disparities are observed in the spatio-temporal pattern of the coupling coordination degree, reflecting the overall evolutionary trend from low to high coupling coordination, along with the characteristics of positive spatial correlation and high spatial concentration; and (3) obstacle factors are analyzed from the aspects of digital infrastructure and green development, emphasizing the construction of mobile phone base stations and investment in pollution control, among other aspects. This study contributes valuable insights for improvement paths for digital infrastructure and green development, offering recommendations for optimizing strategies to promote their coupled development. Full article
(This article belongs to the Special Issue Promoting Green, Sustainable, and Resilient Urban Construction)
Show Figures

Figure 1

14 pages, 529 KiB  
Article
Nomophobia Levels in Turkish High School Students: Variations by Gender, Physical Activity, Grade Level and Smartphone Use
by Piyami Çakto, İlyas Görgüt, Amayra Tannoubi, Michael Agyei, Medina Srem-Sai, John Elvis Hagan, Oğuzhan Yüksel and Orhan Demir
Youth 2025, 5(3), 78; https://doi.org/10.3390/youth5030078 - 1 Aug 2025
Viewed by 268
Abstract
The rapidly changing dynamics of the digital age reshape the addiction relationship that high school students establish with technology. While smartphones remove boundaries in terms of communication and access to information, their usage triggers a source of anxiety and nomophobia. The increase in [...] Read more.
The rapidly changing dynamics of the digital age reshape the addiction relationship that high school students establish with technology. While smartphones remove boundaries in terms of communication and access to information, their usage triggers a source of anxiety and nomophobia. The increase in students’ anxiety levels because of their over-reliance on mobile phone use leads to significant behavioral changes in their mental health, academic performance, social interactions and financial dependency. This study examined the nomophobia levels of high school students according to selected socio-demographic indicators. Using the relational screening model, the multistage sampling technique was used to select a sample of 884 participants: 388 from Science High School and 496 from Anatolian High School (459 female, 425 male, Mage = 16.45 ± 1.14 year). Independent sample test and One-way ANOVA were applied. Depending on the homogeneity assumption of the data, Welch values were considered, and Tukey tests were applied as a second-level test from post hoc analyses. Comprehensive analyses of nomophobia levels revealed that young individuals’ attitudes towards digital technology differ significantly according to their demographic and behavioral characteristics. Variables such as gender, physical activity participation, grade level and duration of smartphone use are among the main factors affecting nomophobia levels. Female individuals and students who do not participate in physical activity exhibit higher nomophobia scores. Full article
Show Figures

Figure A1

9 pages, 1717 KiB  
Article
New Imaging Method of Mobile Phone-Based Colorimetric Sensor for Iron Quantification
by Ngan Anh Nguyen, Asher Hendricks, Emily Montoya, Amber Mayers, Diwitha Rajmohan, Aoife Morrin, Margaret McCaul, Nicholas Dunne, Noel O’Connor, Andreas Spanias, Gregory Raupp and Erica Forzani
Sensors 2025, 25(15), 4693; https://doi.org/10.3390/s25154693 - 29 Jul 2025
Viewed by 232
Abstract
Blood iron levels are related to many health conditions, affecting hundreds of millions of individuals worldwide. To aid in the prevention and treatment of iron-related disorders, previous research has developed a low-cost, accurate, point-of-care method for measuring iron from a single finger-prick blood [...] Read more.
Blood iron levels are related to many health conditions, affecting hundreds of millions of individuals worldwide. To aid in the prevention and treatment of iron-related disorders, previous research has developed a low-cost, accurate, point-of-care method for measuring iron from a single finger-prick blood sample. This study builds upon that work by introducing an improved imaging method that accurately reads sensor images irrespective of variations in environmental illumination and camera quality. Smartphone cameras were used as analytical tools, demonstrating an average coefficient of variation of 5.13% across different phone models, and absorbance results were found to be improved by 8.80% compared to the method in a previous study. The proposed method successfully enhances iron detection accuracy under diverse lighting conditions, paving the way for smartphone-based sensing of other colorimetric reactions involving various analytes. Full article
(This article belongs to the Special Issue Colorimetric Sensors: Methods and Applications (2nd Edition))
Show Figures

Figure 1

19 pages, 8766 KiB  
Article
Fusion of Airborne, SLAM-Based, and iPhone LiDAR for Accurate Forest Road Mapping in Harvesting Areas
by Evangelia Siafali, Vasilis Polychronos and Petros A. Tsioras
Land 2025, 14(8), 1553; https://doi.org/10.3390/land14081553 - 28 Jul 2025
Viewed by 389
Abstract
This study examined the integraftion of airborne Light Detection and Ranging (LiDAR), Simultaneous Localization and Mapping (SLAM)-based handheld LiDAR, and iPhone LiDAR to inspect forest road networks following forest operations. The goal is to overcome the challenges posed by dense canopy cover and [...] Read more.
This study examined the integraftion of airborne Light Detection and Ranging (LiDAR), Simultaneous Localization and Mapping (SLAM)-based handheld LiDAR, and iPhone LiDAR to inspect forest road networks following forest operations. The goal is to overcome the challenges posed by dense canopy cover and ensure accurate and efficient data collection and mapping. Airborne data were collected using the DJI Matrice 300 RTK UAV equipped with a Zenmuse L2 LiDAR sensor, which achieved a high point density of 285 points/m2 at an altitude of 80 m. Ground-level data were collected using the BLK2GO handheld laser scanner (HPLS) with SLAM methods (LiDAR SLAM, Visual SLAM, Inertial Measurement Unit) and the iPhone 13 Pro Max LiDAR. Data processing included generating DEMs, DSMs, and True Digital Orthophotos (TDOMs) via DJI Terra, LiDAR360 V8, and Cyclone REGISTER 360 PLUS, with additional processing and merging using CloudCompare V2 and ArcGIS Pro 3.4.0. The pairwise comparison analysis between ALS data and each alternative method revealed notable differences in elevation, highlighting discrepancies between methods. ALS + iPhone demonstrated the smallest deviation from ALS (MAE = 0.011, RMSE = 0.011, RE = 0.003%) and HPLS the larger deviation from ALS (MAE = 0.507, RMSE = 0.542, RE = 0.123%). The findings highlight the potential of fusing point clouds from diverse platforms to enhance forest road mapping accuracy. However, the selection of technology should consider trade-offs among accuracy, cost, and operational constraints. Mobile LiDAR solutions, particularly the iPhone, offer promising low-cost alternatives for certain applications. Future research should explore real-time fusion workflows and strategies to improve the cost-effectiveness and scalability of multisensor approaches for forest road monitoring. Full article
Show Figures

Figure 1

21 pages, 2139 KiB  
Article
Blue Light Effect on Metabolic Changes in Induced Precocious Puberty in Rats
by Luciana-Mădălina Gherman, Elena-Mihaela Jianu, Ștefan Horia Roșian, Mădălin Mihai Onofrei, Lavinia Patricia Mocan, Veronica Sanda Chedea, Ioana Corina Bocsan, Dragoş Apostu, Andreea Roxana Todea, Eva Henrietta Dulf, Emilia Laura Mogoșan, Carmen Mihaela Mihu, Cătălina Angela Crişan, Ștefan Cristian Vesa, Anca Dana Buzoianu and Raluca Maria Pop
Biology 2025, 14(8), 951; https://doi.org/10.3390/biology14080951 (registering DOI) - 28 Jul 2025
Viewed by 428
Abstract
Modern life, characterized by constant exposure to artificial light from electronic devices, such as light-emitting diodes (LEDs), disrupts the natural circadian rhythm and induces important metabolic changes. The impact of blue light exposure on male and female rat’s onset of puberty, hormonal and [...] Read more.
Modern life, characterized by constant exposure to artificial light from electronic devices, such as light-emitting diodes (LEDs), disrupts the natural circadian rhythm and induces important metabolic changes. The impact of blue light exposure on male and female rat’s onset of puberty, hormonal and biochemical parameters was assessed by comparison between the four study groups: the control group (CTRL) maintained under normal light conditions, the group exposed to blue light from a mobile phone (MP), the group subjected to blue light from a computer screen (PC), and the group exposed to blue light from an LED lamp (LED). Both female and male rats exposed to PC and LED failed to thrive, with a significantly lower body weight intake than the CTRL group. All three distinct sources of blue light interfered with the cyclicity of the estrous cycle in female rats. A marked decrease in the number of complete estrous cycles and the highest incidence of incomplete cycles were noticed in the LED group. Elevated ALT, AST, glucose, and insulin levels were influenced in a gender-specific manner, and depending on the source of emitted light. Prolonged blue light exposure induces significant metabolic disruptions and possesses important future research potential in identifying explicit pathways regarding this environmental stressor. Full article
Show Figures

Graphical abstract

21 pages, 2794 KiB  
Article
Medical Data over Sound—CardiaWhisper Concept
by Radovan Stojanović, Jovan Đurković, Mihailo Vukmirović, Blagoje Babić, Vesna Miranović and Andrej Škraba
Sensors 2025, 25(15), 4573; https://doi.org/10.3390/s25154573 - 24 Jul 2025
Viewed by 347
Abstract
Data over sound (DoS) is an established technique that has experienced a resurgence in recent years, finding applications in areas such as contactless payments, device pairing, authentication, presence detection, toys, and offline data transfer. This study introduces CardiaWhisper, a system that extends the [...] Read more.
Data over sound (DoS) is an established technique that has experienced a resurgence in recent years, finding applications in areas such as contactless payments, device pairing, authentication, presence detection, toys, and offline data transfer. This study introduces CardiaWhisper, a system that extends the DoS concept to the medical domain by using a medical data-over-sound (MDoS) framework. CardiaWhisper integrates wearable biomedical sensors with home care systems, edge or IoT gateways, and telemedical networks or cloud platforms. Using a transmitter device, vital signs such as ECG (electrocardiogram) signals, PPG (photoplethysmogram) signals, RR (respiratory rate), and ACC (acceleration/movement) are sensed, conditioned, encoded, and acoustically transmitted to a nearby receiver—typically a smartphone, tablet, or other gadget—and can be further relayed to edge and cloud infrastructures. As a case study, this paper presents the real-time transmission and processing of ECG signals. The transmitter integrates an ECG sensing module, an encoder (either a PLL-based FM modulator chip or a microcontroller), and a sound emitter in the form of a standard piezoelectric speaker. The receiver, in the form of a mobile phone, tablet, or desktop computer, captures the acoustic signal via its built-in microphone and executes software routines to decode the data. It then enables a range of control and visualization functions for both local and remote users. Emphasis is placed on describing the system architecture and its key components, as well as the software methodologies used for signal decoding on the receiver side, where several algorithms are implemented using open-source, platform-independent technologies, such as JavaScript, HTML, and CSS. While the main focus is on the transmission of analog data, digital data transmission is also illustrated. The CardiaWhisper system is evaluated across several performance parameters, including functionality, complexity, speed, noise immunity, power consumption, range, and cost-efficiency. Quantitative measurements of the signal-to-noise ratio (SNR) were performed in various realistic indoor scenarios, including different distances, obstacles, and noise environments. Preliminary results are presented, along with a discussion of design challenges, limitations, and feasible applications. Our experience demonstrates that CardiaWhisper provides a low-power, eco-friendly alternative to traditional RF or Bluetooth-based medical wearables in various applications. Full article
Show Figures

Graphical abstract

20 pages, 2737 KiB  
Technical Note
Obtaining the Highest Quality from a Low-Cost Mobile Scanner: A Comparison of Several Pipelines with a New Scanning Device
by Marek Hrdina, Juan Alberto Molina-Valero, Karel Kuželka, Shinichi Tatsumi, Keiji Yamaguchi, Zlatica Melichová, Martin Mokroš and Peter Surový
Remote Sens. 2025, 17(15), 2564; https://doi.org/10.3390/rs17152564 - 23 Jul 2025
Viewed by 264
Abstract
The accurate measurement of the tree diameter is vital for forest inventories, urban tree quality assessments, the management of roadside and railway vegetation, and various other applications. It also plays a crucial role in evaluating tree growth dynamics, which are closely linked to [...] Read more.
The accurate measurement of the tree diameter is vital for forest inventories, urban tree quality assessments, the management of roadside and railway vegetation, and various other applications. It also plays a crucial role in evaluating tree growth dynamics, which are closely linked to tree health, structural stability, and vulnerability. Although a range of devices and methodologies are currently under investigation, the widespread adoption of laser scanners remains constrained by their high cost. This study therefore aimed to compare high-end laser scanners (Trimble TX8 and GeoSLAM ZEB Horizon) with cost-effective alternatives, represented by the Apple iPhone 14 Pro and the LA03 scanner developed by mapry Co., Ltd. (Tamba, Japan). It further sought to evaluate the feasibility of employing these more affordable devices, even for small-scale forest owners or managers. Given the growing availability of 3D-based forest inventory algorithms, a selection of such processing pipelines was used to assess the practical potential of the scanning devices. The tested low-cost device produced moderate results, achieving a tree detection rate of up to 78% and a relative root mean square error (rRMSE) of 19.7% in diameter at breast height (DBH) estimation. However, performance varied depending on the algorithms applied. In contrast, the high-end mobile laser scanning (MLS) and terrestrial laser scanning (TLS) systems outperformed the low-cost alternative across all metrics, with tree detection rates reaching up to 99% and DBH estimation rRMSEs as low as 5%. Nevertheless, the low-cost device may still be suitable for scanning small sample plots at a reduced cost and could potentially be deployed in larger quantities to support broader forest inventory initiatives. Full article
Show Figures

Graphical abstract

24 pages, 3580 KiB  
Article
Delineating Urban High–Risk Zones of Disease Transmission: Applying Tensor Decomposition to Trajectory Big Data
by Tianhua Lu and Wenjia Zhang
ISPRS Int. J. Geo-Inf. 2025, 14(8), 285; https://doi.org/10.3390/ijgi14080285 - 23 Jul 2025
Viewed by 270
Abstract
Risk zone delineation and mobility behavior control constitute critical measures in pandemic containment. Numerous studies utilize static demographic data or dynamic mobility data to calculate the high–risk zones present in cities; however, these studies fail to concurrently consider activity and mobility patterns of [...] Read more.
Risk zone delineation and mobility behavior control constitute critical measures in pandemic containment. Numerous studies utilize static demographic data or dynamic mobility data to calculate the high–risk zones present in cities; however, these studies fail to concurrently consider activity and mobility patterns of populations in both space and time, which results in many studies only being able to employ static geostatistical analytical methods, neglecting the transmission risks associated with human mobility. This study utilized the mobile phone signaling data of Shenzhen residents from 2019 to 2020 and developed a CP tensor decomposition algorithm to decompose the long-sequence spatiotemporal trajectory data to detect high risk zones in terms of detecting overlapped community structures. Tensor decomposition algorithms revealed community structures in 2020 and the overlapping regions among these communities. Based on the overlap in spatial distribution and the similarity in temporal rhythms of these communities, we identified regions with spatiotemporal co-location as high–risk zones. Furthermore, we calculated the degree of population mixing in these areas to indicate the level of risk. These areas could potentially lead to rapid virus spread across communities. The research findings address the shortcomings of currently used static geographic statistical methods in delineating risk zones, and emphasize the critical importance of integrating spatial and temporal dimensions within behavioral big data analytics. Future research should consider utilizing non-aggregated individual trajectories to construct tensors, enabling the inclusion of individual and environmental attributes. Full article
Show Figures

Figure 1

17 pages, 2402 KiB  
Article
Performance and Comfort of Precise Distal Pointing Interaction in Intelligent Cockpits: The Role of Control Display Gain and Wrist Posture
by Yongmeng Wu, Ninghan Ma, Guoan Mao, Xin Li, Xiao Song, Leshao Zhang and Jinyi Zhi
Multimodal Technol. Interact. 2025, 9(7), 73; https://doi.org/10.3390/mti9070073 - 19 Jul 2025
Viewed by 223
Abstract
Using personal smart devices such as mobile phones to perform precise distal pointing in intelligent cockpits is a developing trend. The present study investigated the effects of different control display gains (CD gains) and wrist movement modalities on performance and comfort for precise [...] Read more.
Using personal smart devices such as mobile phones to perform precise distal pointing in intelligent cockpits is a developing trend. The present study investigated the effects of different control display gains (CD gains) and wrist movement modalities on performance and comfort for precise distal pointing interaction. Twenty healthy participants performed a precise distant pointing task with four constant CD gains (0.6, 0.8, 0.84, and 1.0), two dynamic CD gains, and two wrist movement modalities (wrist extension and rotation) by using a mobile phone as the input device. Physiological electromyographic data, task performance, and subjective questionnaire data were collected. Comparative results show that constant CD gain is superior to dynamic CD gain and that 0.8 to 1.0 is the optimum range of values. The data showed a clear and consistent trend in performance and comfort as the CD gain increased from 0.6 to 1.0, with performance and comfort becoming progressively better, reaching an optimum at 0.84. In terms of the wrist control method, the rotation mode had smaller task completion time than the extension mode. The results of this study provide a basis for the design of remote interaction using mobile phones in an intelligent cockpit. Full article
Show Figures

Figure 1

16 pages, 493 KiB  
Article
Techno-Pessimistic Shock and the Banning of Mobile Phones in Secondary Schools: The Case of Madrid
by Joaquín Paredes-Labra, Isabel Solana-Domínguez, Marco Ramos-Ramiro and Ada Freitas-Cortina
Soc. Sci. 2025, 14(7), 441; https://doi.org/10.3390/socsci14070441 - 18 Jul 2025
Viewed by 723
Abstract
Over a three-year R&D project, the perception of mobile phone use in Spanish secondary schools shifted from initial tolerance to increasingly prohibitive policies. Drawing on the Actor–Network Theory, this study examines how mobile phones—alongside institutional discourses and school and family concerns—acted as dynamic [...] Read more.
Over a three-year R&D project, the perception of mobile phone use in Spanish secondary schools shifted from initial tolerance to increasingly prohibitive policies. Drawing on the Actor–Network Theory, this study examines how mobile phones—alongside institutional discourses and school and family concerns—acted as dynamic actants, shaping public and political responses. The research adopted a qualitative design combining policy and media document analysis, nine semi-structured interviews with key stakeholders, ten regional case studies, and twelve focus groups. The study concluded with a public multiplier event that engaged the broader educational community. The Madrid region, among the first to adopt a restrictive stance, contributed two school-based case studies and three focus groups with teachers, students, and families. Findings suggest that the turn toward prohibition was motivated less by pedagogical evidence than by cultural anxieties, consistent with what it conceptualizes as a techno-pessimistic shock. This shift mirrors the historical patterns of societal reaction to disruption and technological saturation. Rather than reinforcing binary framings of promotion versus prohibition, such moments invite critical reflection. The study argues for nuanced, evidence-based, and multilevel governance strategies to address the complex role of mobile technologies in education. Full article
(This article belongs to the Special Issue Educational Technology for a Multimodal Society)
Show Figures

Graphical abstract

24 pages, 2281 KiB  
Article
Multilayer Network Modeling for Brand Knowledge Discovery: Integrating TF-IDF and TextRank in Heterogeneous Semantic Space
by Peng Xu, Rixu Zang, Zongshui Wang and Zhuo Sun
Information 2025, 16(7), 614; https://doi.org/10.3390/info16070614 - 17 Jul 2025
Viewed by 243
Abstract
In the era of homogenized competition, brand knowledge has become a critical factor that influences consumer purchasing decisions. However, traditional single-layer network models fail to capture the multi-dimensional semantic relationships embedded in brand-related textual data. To address this gap, this study proposes a [...] Read more.
In the era of homogenized competition, brand knowledge has become a critical factor that influences consumer purchasing decisions. However, traditional single-layer network models fail to capture the multi-dimensional semantic relationships embedded in brand-related textual data. To address this gap, this study proposes a BKMN framework integrating TF-IDF and TextRank algorithms for comprehensive brand knowledge discovery. By analyzing 19,875 consumer reviews of a mobile phone brand from JD website, we constructed a tri-layer network comprising TF-IDF-derived keywords, TextRank-derived keywords, and their overlapping nodes. The model incorporates co-occurrence matrices and centrality metrics (degree, closeness, betweenness, eigenvector) to identify semantic hubs and interlayer associations. The results reveal that consumers prioritize attributes such as “camera performance”, “operational speed”, “screen quality”, and “battery life”. Notably, the overlap layer exhibits the highest node centrality, indicating convergent consumer focus across algorithms. The network demonstrates small-world characteristics (average path length = 1.627) with strong clustering (average clustering coefficient = 0.848), reflecting cohesive consumer discourse around key features. Meanwhile, this study proposes the Mul-LSTM model for sentiment analysis of reviews, achieving a 93% sentiment classification accuracy, revealing that consumers have a higher proportion of positive attitudes towards the brand’s cell phones, which provides a quantitative basis for enterprises to understand users’ emotional tendencies and optimize brand word-of-mouth management. This research advances brand knowledge modeling by synergizing heterogeneous algorithms and multilayer network analysis. Its practical implications include enabling enterprises to pinpoint competitive differentiators and optimize marketing strategies. Future work could extend the framework to incorporate sentiment dynamics and cross-domain applications in smart home or cosmetic industries. Full article
Show Figures

Figure 1

11 pages, 210 KiB  
Conference Report
Proceedings of the 14th Alcohol Hangover Research Group Meeting in Glasgow, UK
by Maureen N. Zijlstra, Gillian Bruce, Lydia E. Devenney, Emina Išerić, Jacqueline M. Iversen, Analia Karadayian, Agnese Merlo, Sean O’Neill, Panagiotis Nikolaou, Evi C. van Oostrom, Stephanie M. P. Oskam, Sam Royle, Gabriel Sperrer, Ann-Kathrin Stock and Joris C. Verster
Proceedings 2025, 122(1), 1; https://doi.org/10.3390/proceedings2025122001 - 17 Jul 2025
Viewed by 574
Abstract
This proceedings summarize the presentations of the 14th Alcohol Hangover Research Group (AHRG) meeting, 11–13 April 2024 in Glasgow, UK. At this annual meeting, researchers and industry representatives discussed the current state of knowledge on the causes, consequences, and treatment of alcohol hangovers, [...] Read more.
This proceedings summarize the presentations of the 14th Alcohol Hangover Research Group (AHRG) meeting, 11–13 April 2024 in Glasgow, UK. At this annual meeting, researchers and industry representatives discussed the current state of knowledge on the causes, consequences, and treatment of alcohol hangovers, networked, and established collaborations to conduct joint future research projects. At the 14th AHRG meeting, factors impacting the presence and severity of hangovers were discussed, such as having underlying diseases, daily diet, baseline mood and personality, new information on the pathology of the alcohol hangover, a mobile phone app to monitor alcohol consumption and hangovers, and various novel treatments. Full article
Back to TopTop