Previous Issue
Volume 4, March
 
 

Alloys, Volume 4, Issue 2 (June 2025) – 5 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
11 pages, 3317 KiB  
Article
Corrosion Behavior of Zinc Wrought Alloy ZnAl15Cu1Mg (ZEP1510) as a Potential Substitute for Brass and Galvanized Steel
by Abdulkerim Karaman, Alexander Kremer and Michael Marré
Alloys 2025, 4(2), 9; https://doi.org/10.3390/alloys4020009 - 7 May 2025
Abstract
The increasing restriction of lead in industrial alloys, particularly in copper–zinc-based materials such as CuZn40Pb2, necessitates the development of environmentally safer alternatives. ZnAl15Cu1Mg (ZEP1510), a zinc-based wrought alloy composed of 15% aluminum, 1% copper, 0.03% magnesium, with the remainder being zinc, has emerged [...] Read more.
The increasing restriction of lead in industrial alloys, particularly in copper–zinc-based materials such as CuZn40Pb2, necessitates the development of environmentally safer alternatives. ZnAl15Cu1Mg (ZEP1510), a zinc-based wrought alloy composed of 15% aluminum, 1% copper, 0.03% magnesium, with the remainder being zinc, has emerged as a promising candidate for lead-free applications due to its favorable forming characteristics and corrosion resistance. This study investigates the performance of ZEP1510 compared to conventional leaded copper alloys and galvanized steel. Corrosion behavior was evaluated using neutral salt spray testing, cyclic climate chamber exposure, and electrochemical potential analysis in chloride- and sulfate-containing environments. ZEP1510 exhibited corrosion resistance comparable to brass and significantly better performance than galvanized steel in neutral and humid atmospheres. Combined with its low processing temperature and high recyclability, ZEP1510 presents itself as a viable and sustainable alternative to brass with lead for applications in sanitary, automotive, and electrical engineering industries. Full article
Show Figures

Figure 1

13 pages, 5096 KiB  
Article
Quantitative Study of Internal Defects in Copper Iron Alloy Materials Using Computed Tomography
by Junli Guo, Qiang Hu and Kai Hu
Alloys 2025, 4(2), 8; https://doi.org/10.3390/alloys4020008 - 29 Apr 2025
Viewed by 85
Abstract
Semi-continuous casting is an important method for the large-scale production of high-strength conductive copper-iron (Cu-Fe) alloys in the future. However, serious peeling defects were found on the surface of cold-rolled strips during industrial trials. Due to the multi-step complexity of the manufacturing process [...] Read more.
Semi-continuous casting is an important method for the large-scale production of high-strength conductive copper-iron (Cu-Fe) alloys in the future. However, serious peeling defects were found on the surface of cold-rolled strips during industrial trials. Due to the multi-step complexity of the manufacturing process (from casting to final product), identifying the root cause of defect formation remains challenging. X-ray computed tomography (X-CT) was used to quantitatively characterize the pores and defects in the horizontal continuous casting Cu-Ni-Sn slab, the semi-continuous casting Cu-Fe alloy slab, and the hot-rolled slab of Cu-Fe, and the relationship between the defect characteristics and processes was analyzed. The results showed that the internal defect sphericity distribution of the Cu-Fe alloy slab after hot rolling was similar to that of the reference Cu-Ni-Sn slab. The main difference lies in the low sphericity range (<0.4). The volume of pore defects inside the Cu-Fe alloy after hot rolling was significantly larger than in the reference sample, with a 52-fold volume difference. This phenomenon may be the source of surface-peeling defects in the subsequent cold-rolling process. The occurrence of internal defects in the Cu-Fe alloy is related to both the composition characteristics and casting processes of the Cu-Fe alloy; on the other hand, it is also related to the hot-rolling process. Full article
Show Figures

Figure 1

9 pages, 9335 KiB  
Communication
Effect of Nd on Stacking Fault Energy in Pure Copper: A First-Principles and HRTEM Study
by Mingyi Zhang, Yang Li, Chongyuan Huang, Puyou Ying, Yong Huan, Chong Zhao, Chi Xiao and Fei Liu
Alloys 2025, 4(2), 7; https://doi.org/10.3390/alloys4020007 - 28 Apr 2025
Viewed by 148
Abstract
Stacking fault energy (SFE) can significantly affect the plastic deformation mechanism of metal materials and then affect their mechanical properties. Changing the stacking fault energy by microalloying rare earth elements is an effective means to control the plastic deformation mechanism and optimize the [...] Read more.
Stacking fault energy (SFE) can significantly affect the plastic deformation mechanism of metal materials and then affect their mechanical properties. Changing the stacking fault energy by microalloying rare earth elements is an effective means to control the plastic deformation mechanism and optimize the mechanical properties of the metal materials. Based on first principles, the HRTEM technique and GPA method, the effects of Nd content on the SFE and microstructure of Cu alloys were studied. The results show that the Nd element can significantly reduce the SFE of pure copper. But the change in the Nd element content has little influence on the SFE of the alloy. In addition, with the increase in Nd content, the grain size and twin size are refined. The GPA results show that strong tensile strain is formed inside the twin, and alternating tensile strain and compressive strain structures are formed on the (-11-1) plane at the tip of the twin. Full article
Show Figures

Figure 1

14 pages, 10083 KiB  
Article
Characteristics of Separations in Fracture After Crack Tip Opening Displacement Tests of Low-Carbon Microalloyed Offshore Steel S460MLO
by Eugene Goli-Oglu, Marco Palombo and Andrei Filatov
Alloys 2025, 4(2), 6; https://doi.org/10.3390/alloys4020006 - 23 Apr 2025
Viewed by 168
Abstract
Using the results from testing industrial batches of 23 mm steel heavy plates after thermomechanical rolling and subsequent post-weld heat treatment, the patterns of fatigue crack formation in the fracture specimens during CTOD (Crack Tip Opening Displacement) testing for fracture toughness are investigated. [...] Read more.
Using the results from testing industrial batches of 23 mm steel heavy plates after thermomechanical rolling and subsequent post-weld heat treatment, the patterns of fatigue crack formation in the fracture specimens during CTOD (Crack Tip Opening Displacement) testing for fracture toughness are investigated. Visual, microstructural, and fractographic studies of the nature of fracture formation and the surface of the secondary separations have been conducted. The probable causes of the manifestation of the potential “pop-in” effect on the load–displacement diagrams of the notch opening displacement are described, as well as its potentially negative impact on the interpretation of test results. Full article
Show Figures

Figure 1

10 pages, 4065 KiB  
Article
Electronic Correlations in Ferromagnetic Heusler Alloy ln2MnW: Insights from First-Principles Calculations
by Abdul Munam Khan and Uzma Zahoor
Alloys 2025, 4(2), 5; https://doi.org/10.3390/alloys4020005 - 28 Mar 2025
Viewed by 216
Abstract
First-principles calculations were carried out to investigate the physical properties of the full-Heusler compound In2MnW. The WIEN2K code was utilized with various approximations, such as GGA and GGA+U, to analyze its structural, electronic, and magnetic properties. The unit cell was optimized [...] Read more.
First-principles calculations were carried out to investigate the physical properties of the full-Heusler compound In2MnW. The WIEN2K code was utilized with various approximations, such as GGA and GGA+U, to analyze its structural, electronic, and magnetic properties. The unit cell was optimized to determine the ground-state energy. The calculated formation enthalpy (ΔH) of In2MnW is −0.189 eV, indicating its thermodynamic stability due to the negative value. Band structure analysis using both potentials confirms the compound’s metallic nature, which is further supported by total density of states calculations. The total magnetic moment is found to be 4.3 µB, which slightly increases to 4.4 µB when the U parameter is included. These findings suggest that In2MnW demonstrates metallic ferromagnetic behavior, highlighting its potential as a promising ferromagnetic material for mass storage applications. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop