Application of Multispectral Images to Monitor the Productive Cycle of Vines Fortified with Zinc †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Field
2.2. Fiel Morphology and NDVI
2.3. Quantification of Zn in Grape Leaf’s
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mangueze, A.V.J.; Pessoa, M.F.G.; Silva, M.J.; Ndayiragije, A.; Magaia, H.E.; Cossa, V.S.I.; Reboredo, F.H.; Carvalho, M.L.; Santos, J.P.; Guerra, M.; et al. Simultaneous zinc and selenium biofortification in rice. Accumulation, localization and implications on the overall mineral content of the flour. J. Cereal Sci. 2018, 82, 34–41. [Google Scholar] [CrossRef]
- Rugeles-Reyes, S.M.; Cecílio Filho, A.B.; López Aguilar, M.A.; Silva, P.H.S. Foliar application of zinc in the agronomic biofortification of arugula. Food Sci. Technol. 2019, 39, 1011–1017. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Liu, Y.; Zhang, W.; Chen, X.; Zou, C. Agronomic approach of zinc biofortification can Increase zinc bioavailability in wheat flour and thereby reduce zinc deficiency in humans. Nutrients 2017, 9, 465. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, R.; Hossain, A.; Sharma, P. Zinc biofortification as an innovative technology to alleviate the zinc deficiency in human health: A review. Open Agric. 2020, 5, 176–187. [Google Scholar] [CrossRef]
- Valença, A.W.; Bake, A.; Brouwer, I.D.; Giller, K.E. Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Glob. Food Sec. 2017, 12, 8–14. [Google Scholar] [CrossRef]
- Noulas, C.; Tziouvalekas, M.; Karyotis, T. Zinc in soils, water and food crops. J. Trace Elem. Med. Biol. 2018, 49, 252–260. [Google Scholar] [CrossRef]
- Balafrej, H.; Bogusz, D.; Triqui, Z.A.; Guedira, A.; Bendaou, N.; Smouni, A.; Fahr, M. Zinc hyperaccumulation in plants: A Review. Plants 2020, 9, 562. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Farooq, M.; Rehman, A.; Hussain, M.; Siddique, K.H.M. Zinc nutrition in chickpea (Cicer arietinum): A review. Crop Pasture Sci. 2020, 71, 199–218. [Google Scholar] [CrossRef]
- Popescu, D.; Stoican, F.; Stamatescu, G.; Ichim, L.; Dragana, C. Advanced UAV–WSN System for Intelligent Monitoring in Precision Agriculture. Sensors 2020, 20, 817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogrefe, K.R.; Patil, V.P.; Ruthrauff, D.R.; Meixell, B.W.; Budde, M.E.; Hupp, J.W.; Ward, D.H. Normalized difference vegetation index as an estimator for abundance and quality of avian herbivore forage in arctic Alaska. Remote Sens. 2017, 9, 1234. [Google Scholar] [CrossRef] [Green Version]
- I.P. Instituto Nacional de Estatística. Estatísticas Agrícolas: 2018; INE: Lisbon, Portugal, 2019; pp. 13–32. [Google Scholar]
- International Organisation of Vine; Wine I.O. 2019 Statistical Report on World Vitiviniculture; OIV: Paris, France, 2019; p. 14. [Google Scholar]
- Coelho, A.R.F.; Lidon, F.C.; Pessoa, C.C.; Marques, A.C.; Luís, I.C.; Caleiro, J.C.; Simões, M.; Kullberg, J.; Legoinha, P.; Brito, G.; et al. Can Foliar pulverization with CaCl2 and Ca(NO3)2 trigger Ca enrichment in Solanum Tuberosum L. tubers? Plants 2021, 10, 245. [Google Scholar] [CrossRef] [PubMed]
- Luís, I.C.; Lidon, F.C.; Pessoa, C.C.; Marques, A.C.; Coelho, A.R.F.; Simões, M.; Patanita, M.; Dôres, J.; Ramalho, J.C.; Silva, M.M.; et al. Zinc Enrichment in two contrasting genotypes of Triticum aestivum L grains: Interactions between edaphic conditions and foliar fertilizers. Plants 2021, 10, 204. [Google Scholar] [CrossRef] [PubMed]
- FAO. Agribusiness handbook- Grapes Wine; FAO: Rome, Italy, 2009; pp. 7–12. [Google Scholar]
- Pessoa, C.C.; Lidon, C.F.; Coelho, A.R.F.; Caleiro, J.C.; Marques, A.C.; Luís, I.C.; Kullberg, J.C.; Legoinha, P.; Brito, M.G.; Ramalho, J.C.; et al. Calcium biofortification of Rocha pears, tissues accumulation and physicochemical implications in fresh and heat-treated fruits. Sci. Hortic. Amster. 2021, 277, 109834. [Google Scholar] [CrossRef]
- FAO—Land and Water. Available online: http://www.fao.org/land-water/databases-and-software/crop-information/grape/en/ (accessed on 8 March 2021).
- Taiz, L.; Zeiger, E. Plant Physiology, 3rd ed.; Sinauer Associates: Sunderland, UK, 2002. [Google Scholar]
- Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.; Iqbal, N. Precision agriculture techniques and practices: From considerations to applications. Sensors 2019, 19, 3796. [Google Scholar] [CrossRef] [Green Version]
- Loures, L.; Chamizo, A.; Ferreira, P.; Loures, A.; Castanho, R.; Panagopoulos, T. Assessing the effectiveness of precision agriculture management systems in mediterranean small farms. Sustainability 2020, 12, 3765. [Google Scholar] [CrossRef]
- Cakmak, I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil 2008, 302, 1–17. [Google Scholar] [CrossRef]
- Torabian, S.; Zahedi, M.; Khoshgoftar, A.H. Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress. J. Plant Nutr. 2016, 39, 172–180. [Google Scholar] [CrossRef]
- Ibrahim, Z.R. Effect of Spraying Zinc, Copper and iron on leaf nutrient, fruit set and some fruit quality of pistachio trees (Pistacia vera L.) cv. Halebi. J. Univ. Duhok 2020, 23, 218–227. [Google Scholar] [CrossRef]
- Ahmad, I.; Bibi, F.; Ullah, H.; Munir, T.M. Mango fruit yield and critical quality parameters respond to foliar and soil applications of zinc and boron. Plants 2018, 7, 97. [Google Scholar] [CrossRef] [Green Version]
- Yao, L.; Zhu, J.; Li, Z.; Wang, Y.; Zhou, X.; Wang, J. Effects of zinc fertilizer on photosynthetic characteristics of ‘Shine Muscat’ grape. E3S Web Conf. 2019, 136, 07017. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daccak, D.; Pessoa, C.C.; Coelho, A.R.F.; Marques, A.C.; Luís, I.C.; Caleiro, J.; Silva, M.M.; Simões, M.; Reboredo, F.H.; Pessoa, M.F.; et al. Application of Multispectral Images to Monitor the Productive Cycle of Vines Fortified with Zinc. Biol. Life Sci. Forum 2021, 3, 4. https://doi.org/10.3390/IECAG2021-09665
Daccak D, Pessoa CC, Coelho ARF, Marques AC, Luís IC, Caleiro J, Silva MM, Simões M, Reboredo FH, Pessoa MF, et al. Application of Multispectral Images to Monitor the Productive Cycle of Vines Fortified with Zinc. Biology and Life Sciences Forum. 2021; 3(1):4. https://doi.org/10.3390/IECAG2021-09665
Chicago/Turabian StyleDaccak, Diana, Cláudia Campos Pessoa, Ana Rita F. Coelho, Ana Coelho Marques, Inês Carmo Luís, João Caleiro, Maria Manuela Silva, Manuela Simões, Fernando H. Reboredo, Maria Fernanda Pessoa, and et al. 2021. "Application of Multispectral Images to Monitor the Productive Cycle of Vines Fortified with Zinc" Biology and Life Sciences Forum 3, no. 1: 4. https://doi.org/10.3390/IECAG2021-09665
APA StyleDaccak, D., Pessoa, C. C., Coelho, A. R. F., Marques, A. C., Luís, I. C., Caleiro, J., Silva, M. M., Simões, M., Reboredo, F. H., Pessoa, M. F., Legoinha, P., Brito, M. G., Kullberg, J. C., Almeida, J. A., Campos, P. S., Ramalho, J. C., & Lidon, F. C. (2021). Application of Multispectral Images to Monitor the Productive Cycle of Vines Fortified with Zinc. Biology and Life Sciences Forum, 3(1), 4. https://doi.org/10.3390/IECAG2021-09665