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Abstract: Tools that can monitor biomass and nutritional quality of forage plants are needed to
understand how arctic herbivores may respond to the rapidly changing environment at high latitudes.
The Normalized Difference Vegetation Index (NDVI) has been widely used to assess changes in
abundance and distribution of terrestrial vegetative communities. However, the efficacy of NDVI to
measure seasonal changes in biomass and nutritional quality of forage plants in the Arctic remains
largely un-evaluated at landscape and fine-scale levels. We modeled the relationships between NDVI
and seasonal changes in aboveground biomass and nitrogen concentration in halophytic graminoids,
a key food source for arctic-nesting geese. The model was calibrated based on data collected at one
site and validated using data from another site. Effects of spatial scale on model accuracy were
determined by comparing model predictions between NDVI derived from moderate resolution
(250 × 250 m pixels) satellite data and high resolution (20 cm diameter area) handheld spectrometer
data. NDVI derived from the handheld spectrometer was a superior estimator (R2 ≥ 0.67) of seasonal
changes in aboveground biomass compared to satellite-derived NDVI (R2 ≤ 0.40). The addition of
temperature and precipitation variables to the model for biomass improved fit, but provided minor
gains in predictive power beyond that of the NDVI-only model. This model, however, was only a
moderately accurate estimator of biomass in an ecologically-similar halophytic graminoid wetland
located 100 km away, indicating the necessity for site-specific validation. In contrast to assessments of
biomass, satellite-derived NDVI was a better estimator for the timing of peak percent of nitrogen than
NDVI derived from the handheld spectrometer. We confirmed that the date when NDVI reached 50%
of its seasonal maximum was a reasonable approximation of the period of peak spring vegetative
green-up and peak percent nitrogen. This study demonstrates the importance of matching the scale
of NDVI measurements to the vegetation properties of biomass and nitrogen phenology.
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1. Introduction

Along the approximately 800 km-long Arctic Coastal Plain of Alaska (ACP), a rapid rise
in air temperatures over the last half century has been associated with a decreasing ice pack,
thawing of the permafrost, and a significant shift in the productivity and species composition of
plant communities [1–3]. These dynamic environmental changes complicate predictions of the future
abundance and distributions of coastal plant communities as some may be lost to sea level rise and
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erosion, whereas others may be transformed from freshwater to halophytic species through saltwater
intrusion [4,5]. Tools that monitor changes in the abundance and quality of arctic landscapes are
needed to evaluate how wildlife habitats may be altered [6].

Halophytic graminoid wetlands provide high quality foods that are important for the reproductive
success of three migratory avian herbivores on the ACP, lesser snow geese (Chen caerulescens caerulescens;
hereafter snow geese), greater white-fronted geese (Anser albifrons frontalis; hereafter white-fronted
geese), and black brant (Branta bernicla nigricans; hereafter brant) [7,8]. These wetlands contain plants
that are high in nitrogen, a critical nutrient for the rapid growth of goslings during the short arctic
summers. Populations of all three goose species have increased on the ACP over the last 30 years [9–11].
The halophytic graminoid wetlands on the ACP are widely distributed, and to date, grazing by geese
has had little effect on productivity of these wetlands, indicating that they can likely support further
increases in goose populations [8]. Knowing how biomass and nutrient quality of forage plants
varies seasonally and annually is necessary to predictlong-term outcomes for these migratory avian
herbivores [7].

Field measurements of forage plant biomass and nutritional quality typically involve
time-intensive sample collection, often by destructive means, and processing that requires significant
commitment of funding and personnel. Thus, there is great value in alternative techniques that
yield accurate measures of forage abundance and quality while reducing costs and effort. Remotely
sensed vegetation indices are well established tools of wildlife research and management that can
serve as proxies for landscape level changes in biomass and nutrient quality without the repeated
destructive sampling of vegetation [12–16]. Of these indices, the Normalized Difference Vegetation
Index (NDVI) is one of easiest to calculate, most commonly available and has been proven to be
an effective tool for monitoring vegetative changes across a wide range of terrestrial ecosystems,
including alpine and arctic tundra, grasslands, and temperate and tropical forests [14–20], see [21] for
a review. The index is a simple ratio calculation of the red and near-infrared (NIR) reflectance bands
that is sensitive to the reflected photosynthetically active radiation of plants [22,23]. NDVI is highly
correlated with plant productivity (“greenness” [24]), and therefore, is a good estimator of changes in
aboveground biomass [13,24–26], canopy cover, and structure [27–29] in plant communities. Because
NDVI measures photosynthetic activity, it also correlates positively with chlorophyll content [30],
and in turn, nitrogen levels in plants [31]. The relationship between NDVI and nitrogen content
in plants, however, has largely been based on fine scale ground-based spectrometer readings of
agricultural crops and few studies have tested the accuracy of the relationship using satellite-derived
NDVI at the landscape level [21]. Nevertheless, seasonal threshold metrics developed from repeated
(time-series) measurements of NDVI values at the same location have proven useful in predicting the
timing of both the start of the growing season (green-up) [32,33] and peak nitrogen concentration in
forage plants [13,34,35], which are key indicators for reproductive success in arctic-nesting geese and
other herbivores.

Increasingly, satellite-derived NDVI has been used in the Arctic to assess vegetative change
in biomass and quality across landscapes and broad-scale communities [18,34–38], but few studies
have been validated with concurrent assessments of NDVI and field measurements at landscape and
fine-scale levels. These assessments are important because satellite-derived NDVI is not without errors.
Accurate assessments in the Arctic are particularly challenging because of the frequent cloud cover,
moist soils, sparse vegetative communities, and numerous water bodies that are known to influence
spectral reflectance and accuracy in NDVI [21,39]. NDVI is also affected by soil reflectance in sparsely
vegetated areas leading to underestimations of biomass, while in densely vegetated areas, NDVI can
be influenced by leaf closure of the canopy that may cause values to plateau even though biomass
increases [17,22,39]. Peak nitrogen levels in plants generally occur early in the growing season when
plant growth is most rapid. But in the Arctic, this is also the period when plant density is low and
snow melt creates areas of standing water.
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The relationships between NDVI and biomass and nitrogen appear to differ among plant
communities [26,27]. Low (≥1 km2)- to moderate (30 to 250 m2)-resolution satellite-derived NDVI
may not accurately detect changes in vegetative biomass and nutrient quality occurring at finer scales.
For example, Doiron et al. [35] found that satellite-derived NDVI with 1 km2 pixels was a good
estimator of peak nitrogen availability in arctic wet (freshwater) tundra plants but was a mediocre
estimator for seasonal changes in biomass. NDVI is sensitive to scattering of red and NIR bands
associated with atmospheric contaminants [40]. Therefore, it is important to validate the accuracy of
NDVI as an estimator with empirical data in the environment of interest.

We used high resolution (20 cm diameter area) ground- and moderate resolution (250 × 250 m
pixels) satellite-derived data to evaluate seasonal relationships between NDVI and field measures of
biomass and nutritional quality of halophytic graminoids on the ACP. To the best of our knowledge
this is the first study to assess the efficacy of moderate resolution satellite-derived NDVI as a predictor
of biomass and quality in halophytic graminoid grazing lawns, where herbivory strongly influences
plant structure and nutrient cycling [41]. We were particularly interested in determining whether
NDVI could be used as an alternative to intensive species-level sampling. Our primary objectives
were to: (1) model the relationships between NDVI and field measurements of aboveground biomass
and nitrogen concentration in halophytic graminoid wetlands, and (2) assess whether the relative
timing of peak nitrogen concentration in halophytic wetland plants could be identified based on NDVI.
We compared NDVI-derived phenology as predictors of the date of peak nitrogen concentration.
We explicitly determined the best predictor and validated our assessments with multi-year, site-specific
collections, which differs from other studies in the Arctic. We also investigated the influence of
environmental variables, spectral-band definitions, and spatial scale on seasonal NDVI predictions
of biomass and nitrogen concentration. Finally, we tested the site-specificity of biomass predictions
in a validation exercise involving halophytic graminoid wetlands in a similar ecosystem located
approximately 100 km from our primary study site.

2. Study Area

We conducted our study between mid-May and mid-August, 2011–2015 at two sites along
the coast of the central ACP, one in the Colville River Delta (CRD) and the other in the Smith
River estuary near Point Lonely (PL; Figure 1). Our primary study site was the CRD, where we
established the relationships between NDVI and plant biomass and nitrogen. We validated those
relationships at the other study site (PL). Each site supported expanses of halophytic graminoid
wetlands in low (<1 m above sea level) lying areas near (<3 km) the coast [42]. The plants within the
halophytic graminoid wetlands were dominated by Carex subspathacea (≥98%) that was interspersed
with Puccinellia spp., Stellaria spp., and moss. The canopy height of the C. subspathacea-dominated
wetlands remained short (<6 cm) during the study period, possibly because of repetitive grazing
by geese. Intermixed among the stands of C. subspathacea and immediately adjacent and inland at
higher elevations (>1 m) to the wetlands were polygonal ice-wedge ponds and lakes surrounded by
freshwater graminoid wetlands dominated by C. aquatilis and Eriophorum angustifolium in the low
lying moist areas and emergent species like Arctophila fulva and Hippuris vulgaris in the larger shallow
ponds and lakes. Mixed communities of dwarf shrubs (e.g., Salix ovalifolia) and grasses (e.g., Poa spp.)
occupied the rims of sloughs and elevated areas where soils were drier. Brant and snow geese nested
coastally in elevated freshwater graminoid wetlands, mixed plant communities, and islands of lakes,
while white-fronted geese were dispersed across inland (>3 km) locations; all three species foraged in
the halophytic graminoid wetlands during nesting (June–July) and brood-rearing (July–August).
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Figure 1. Study area locations on the Arctic Coastal Plain of Alaska (top; triangles) with insert (SPOT5 
satellite imagery) showing orientation of vegetation plots (green points) in relation to three 
“expedited” Moderate Resolution Imaging Spectroradiometer (eMODIS) pixels (red; red dot = center) 
and schematic of plot layout (bottom) where biomass and percent nitrogen of halophytic graminoids 
were measured. High resolution measurements of Normalized Difference Vegetation Index (NDVI) 
were collected using a handheld spectrometer within each plot (see Methods). 

3. Methods 

3.1. Vegetation Sampling and Processing 

Coinciding with snow melt in late May or early June, we setup paired exclosure/control plots 
within large (>1 km2) C. subspathacea-dominated wetlands at both study sites. Within wetlands, we 
opportunistically located plots in relatively homogeneous patches of C. subspathacea that 
encompassed a broad range of variation in biomass. New plots were selected each year because our 
sampling procedure potentially had carryover effects on biomass in subsequent years. We sampled 

Figure 1. Study area locations on the Arctic Coastal Plain of Alaska (top; triangles) with insert (SPOT5
satellite imagery) showing orientation of vegetation plots (green points) in relation to three “expedited”
Moderate Resolution Imaging Spectroradiometer (eMODIS) pixels (red; red dot = center) and schematic
of plot layout (bottom) where biomass and percent nitrogen of halophytic graminoids were measured.
High resolution measurements of Normalized Difference Vegetation Index (NDVI) were collected
using a handheld spectrometer within each plot (see Methods).

3. Methods

3.1. Vegetation Sampling and Processing

Coinciding with snow melt in late May or early June, we setup paired exclosure/control plots
within large (>1 km2) C. subspathacea-dominated wetlands at both study sites. Within wetlands,
we opportunistically located plots in relatively homogeneous patches of C. subspathacea that
encompassed a broad range of variation in biomass. New plots were selected each year because
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our sampling procedure potentially had carryover effects on biomass in subsequent years. We sampled
5–8 pairs of exclosure/control (i.e., ungrazed/grazed) plots (8–16 plots per year) between 2011 and
2015. We sampled both grazed and ungrazed plots to ensure that our measurements contained a
representative range of potential variation in biomass and nitrogen composition. We also believed
that any effects of grazing on biomass of C. subspathacea were minimal because within-year differences
in average biomass ranged 5–22 g m−2 between grazed and ungrazed plots. The magnitude of
biomass lost to grazing was, therefore, small relative to the observed range of inter-annual variation
in biomass across samples (see below). Similarly, we found no evidence that nitrogen concentrations
were substantially different between grazed and ungrazed plots; within-year differences in average
percent nitrogen ranged 0.00–0.09%.

On intervals of 6–10 days, we randomly selected and removed a 20 × 20 cm turve (block of
vegetation and soil) from each plot to a depth of approximately 5 cm, clipped and preserved all
aboveground biomass, and then returned the substrate to the sample location. Turves were spaced
10–20 cm apart to prevent edge effect from previous sample collection and >10 cm away from the plot
perimeter to avoid potential effects of the exclosure material on vegetative growth; a 50 × 50 cm sector
of each plot was left undisturbed for NDVI sampling (Figure 1).

Processing and analysis of vegetation samples varied slightly between study sites. At the
CRD, vegetation samples were rinsed in fresh water, dried at ambient temperature, and all live
C. subspathacea and Puccinellia spp. were separated from other vegetation and frozen. After the field
season, samples were dried to constant mass at 50 ◦C and weighed (g). A subsample (0.5–1.0 g) was
analyzed for percent nitrogen using a C-N analyzer at the Washington State University Wildlife Habitat
and Nutrition Laboratory. Vegetation samples at PL were clipped and rinsed as at the CRD, but then
immediately dried at 50 ◦C for 48 h and stored; after the field season, samples were sorted and then
dried to constant mass and weighed following the same methods as with the CRD samples. Differences
in biomass between sorting methods was negligible when a set of turves (n = 9) was divided into equal
sub-samples, clipped (early, mid, and late season), and then half sorted prior to drying and the other
sorted after drying (Hogrefe unpublished data).

3.2. Environmental Data

At the CRD, we placed a sensor in the center of each exclosure to measure hourly soil temperature
(±0.21 ◦C) at a depth of 6 cm. Sensors were placed in the ground just after thawing in early June
each year and soil temperature was recorded across all sampling intervals. We obtained hourly
precipitation data from the National Oceanic and Atmospheric Administration National Climate Data
Center (www.ncdc.noaa.gov/cdo-web/) for Anachlik Island (Colville Village, 2011–2015; Figure 1),
located 15 km east of the CRD site. Daily mean values of each environmental variable were converted
to cumulative value to date, cumulative value per study period, and mean value per study period
based on the sample interval for each field season.

3.3. NDVI Data

In association with vegetation sampling, we obtained hyperspectral reflectance profiles at each
plot using handheld spectrometers manufactured by Unispec (Amesbury, MA, USA; at CRD) and
Ocean Optics (Largo, FL, USA; at PL). Controlled trials comparing the two units across a range of
halophytic graminoid densities demonstrated that the units measured essentially equal NDVI values
(Figure A1). The spectrometers recorded reflectance profiles within a 20 cm diameter area at a spectral
resolution of 3.2–3.4 nanometers (nm) and range of 301.6–1143.4 nm. The sensor optic was mounted
on a 1.2 m-long fiber optic cable and had a 25◦ field of view, providing a ratio of sensor height to
reading footprint diameter of approximately 2:1. Prior to each reflectance reading, spectrometers were
calibrated against a white standard to normalize for any changes in light conditions between sampling
occasions. Reflectance readings were taken from a height of 50 cm, centered on the selected turve and
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the undisturbed sector (Figure 1). We used the turve reading to compare NDVI with biomass and
nitrogen. A reading of undisturbed vegetation in the plot served as a control.

We calculated two separate NDVI values using reflectance readings from handheld spectrometers:
one based on band definitions for the “expedited” Moderate Resolution Imaging Spectroradiometer
(eMODIS) imagery from the Terra satellite [43], and the other based on band definitions for the
WorldView-2 satellite imagery. The band definitions for eMODIS NDVI were red = 616–674 nm and
near infrared (NIR) = 837–880 nm; for WorldView-2 NDVI, the definitions were red = 630–690 nm and
NIR = 770–895 nm. Hereafter, the handheld spectrometer measurements based on these two sets of
band definitions are referred to as SReMO and SRWV2, respectively. Reflectance was derived as the
mean of all hyperspectral values falling within each of the band ranges and NDVI was calculated as:
NDVI = (NIR − Red)/(NIR + Red) [21].

We obtained satellite-derived eMODIS NDVI data for the halophytic graminoid wetlands at CRD
and PL from the US Geological Survey-Earth Resources Observation and Science Center (USGS EROS).
The eMODIS NDVI for Alaska is a 7–day maximum value composite dataset that provides consistent
geographic and temporal coverage while accounting for atmospheric contamination [43,44]. The USGS
EROS eMODIS NDVI data uses the MODIS L1B Terra surface reflectance data made available by the
National Aeronautics and Space Administration (NASA) that is corrected for molecular scattering,
ozone absorption, and aerosols. We also applied additional corrections for atmospheric effects using a
temporal smoothing filter [45] to the time series data.

We acquired satellite-derived NDVI data for three, 250 × 250 m pixels that were positioned to
minimize inclusion of water bodies while including halophytic graminoid wetlands near the paired
exclosure/control plots (Figure 1). Stands of C. subspathacea comprised a significant portion, but not the
majority, of the area of the eMODIS pixels. Excluding water, an eMODIS pixel comprised an average
of approximately 40% C. subspathacea-dominated halophytic graminoids, 40% freshwater graminoids,
10% dwarf shrubs, and 10% unvegetated (sand/mud; Hogrefe unpublished data).

3.4. Analyses

3.4.1. Predicting Aboveground Biomass and Nitrogen Biomass Using NDVI

We followed an information-theoretic approach [46] to assess support for NDVI and
environmental variables as predictors in analyses of aboveground biomass (g live C. subspathacea m−2)
and nitrogen biomass (g nitrogen m−2) using data collected at the CRD. Our primary objectives
were to determine the utility of NDVI in predicting our response variables and identify explanatory
variables that may improve predictive power. We fitted generalized linear mixed-effects models
to account for the effect of our plot-based sample design, with sample plots modeled as a random
effect and other variables modeled as fixed effects [47]. To assess whether NDVI band definitions
affected the accuracy of biomass predictions, we tested calculations of plot-level NDVI from handheld
spectrometers (SReMO and SRWV2) as separate variables. We also included a variable for landscape-level
NDVI from satellite-based eMODIS (eMO) to assess the effect of spatial scale on model accuracy.
Soil temperature and precipitation influence productivity of arctic tundra plants [29,48], so we
considered the environmental variables cumulative degree days above 0 ◦C up until sample collection
(temperature) and cumulative precipitation between sampling periods (precipitation). We also
considered day of year (date) as a continuous variable to control for repeated sampling across the
growing season. Because the intent of our approach was to derive a predictive model for future
applications, we did not explicitly model the effect of year on our estimates of biomass. Because of
differences in clipping techniques in 2011 from other years, we excluded 2011 vegetation samples from
analyses of biomass, but retained them for analyses of nitrogen concentration. Values of temperature
and biomass were log10-transformed to align with the underlying assumptions of linear regression.
In each analysis, we tested a suite of 17 models; each model contained one of the three NDVI variables
alone and in conjunction with date, temperature, precipitation, and their additive combinations.
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We calculated model-averaged parameter and prediction estimates using Akaike weights wi [46]
and considered parameters to be biologically meaningful if their 95% confidence intervals did not
overlap zero. We conducted all analyses in R version 3.1.2 [49], fit mixed-effects models using the
lme4 package [50], averaged model outputs using the AICcmodavg package [51], and calculated
model-specific prediction intervals using the merTools package [52]. Because the information-theoretic
approach provides a measure of relative model fit that reflects only the explanatory variables in a
particular model set, we also calculated marginal R2 for the fixed effects of each model as a measure of
absolute model fit following the approach of Nakagawa and Schielzeth [53] using the piecewiseSEM
package [54].

To assess the difference in biomass estimates between models that included environmental
variables and date with those that did not, we applied observed date-specific values of temperature
and precipitation to yield model-averaged predictions of biomass. Comparisons between models were
made using approaches implemented by Knowles and Frederick [52].

3.4.2. Validation: Prediction of Biomass

To assess model performance over a broader spatial scale, we applied a model relating NDVI
to C. subspathacea biomass derived at the CRD in 2012–2015 to NDVI values and vegetation samples
collected at PL in 2012–2013. Model performance was evaluated by comparing the slopes of the linear
relationships between predicted and observed biomass values.

3.4.3. Phenology Metric: Linking Seasonal Phenology in NDVI and Percent Nitrogen

We also examined whether seasonal patterns in NDVI could be used to predict the relative timing
of peak nitrogen concentration. Percent nitrogen varies seasonally in arctic vegetation as a function
of plant growth rates, tissue allocation, and nutrient resorption at the end of the growing season,
with the highest nitrogen concentrations typically found in rapidly-growing early season tissues [55].
Because NDVI reflects the amount of photosynthetically active, green vegetation, the timing and rate
of change in early-season NDVI values is expected to be associated with seasonal trend in percent
nitrogen [35].

We estimated three NDVI-derived phenology metrics for predicting the date of peak nitrogen
concentration: (1) the date of maximum rate of increase in NDVI (max ∆), (2) the date when NDVI
reached 50% of its seasonal maximum (50% max), and (3) the date of maximum NDVI (max). The date
of maximum rate of increase in NDVI is associated with rapid early-season plant growth and has
been previously used to assess forage nitrogen content and habitat selection for arctic herbivores in
Alaska [34]. The date of 50% max is meant to serve as a computationally simple approximation of the
date of max ∆ [35], while the date of max NDVI reflects the peak of vegetation greenness.

We compared NDVI and nitrogen phenology using satellite-derived eMODIS-derived NDVI
(eMO) and handheld spectrometer-derived NDVI with band definitions from eMODIS (SReMO) and
WorldView-2 (SRWV2). This suite of variables allowed us to assess the accuracy of NDVI to predict
nitrogen phenology for each year (2011–2015) across different scales and spectral band definitions.
Annual growth curves for eMO were based on the median NDVI value of 3 pixels for each sampling
event over the season, whereas the annual growth curves for SReMO and SRWV2 were fit to all plot
data at each sampling event over the season. We pooled data across plots when fitting curves to avoid
pseudoreplication among plots exposed to the same growing environment. This choice was based
on previous research indicating that nitrogen phenology is strongly regulated by synoptic weather
patterns [48], and by preliminary analyses showing strong similarity in seasonal curves among plots.

3.4.4. Phenology Curve Fitting and Metric Estimation

We modeled seasonal trends in NDVI using both Gaussian and lognormal functions with day
of year (DOY) as the independent variable, as well as a null (intercept only) model (Table A1).
Gaussian and lognormal curves have been used to describe nitrogen seasonal trends in previous
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work linking NDVI and nitrogen phenology [35]. Both NDVI and percent nitrogen typically show
unimodal but asymmetric seasonal trends, increasing rapidly to a peak early in the growing season
and declining slowly thereafter due to a combination of senescence, decomposition, and nutrient
resorption [48,55]. We generated model-averaged predictions of all NDVI variables using Akaike’s
information criterion adjusted for sample size AICc [46].

After curve-fitting, we estimated phenology indices using curve predictions rather than raw data
because field measurements were obtained at coarse intervals (6–10 days). The date of maximum NDVI
and 50% maximum were then estimated by generating model-averaged NDVI predictions across the
growing season. We estimated the first derivative of the curves using finite difference approximation
to determine the date of maximum rate of change in NDVI because model-averaged curves could
not be solved numerically. To ensure that these indices were not constrained by a late start to the
field season, we predicted NDVI and percent nitrogen values from 24 May (~earliest observed date of
breakup) to 31 August, regardless of the dates when field measurements began and ended.

In contrast to seasonal assessments of NDVI, we modeled seasonal trends in nitrogen using a
third-order polynomial. Exploratory plots of seasonal trends in percent nitrogen revealed a notable
late-season increase in most years, which could not have been captured by either the Gaussian or
lognormal curves. Because we did not need to estimate the date of maximum change in nitrogen,
we chose the curve that best fit the data. All curves were fit to seasonal NDVI and percent nitrogen
data in R [49], using the minpack.lm package [56].

3.4.5. Assessing Predictive Power of Phenology Metrics

We compared NDVI and nitrogen phenology by regressing the date of maximum percent nitrogen
against each phenology metric using estimates from 2011–2015. We assessed predictive power by
regressing predicted dates of peak nitrogen from these models against observed values from vegetation
samples. In addition to examining standard regression statistics (R2, r), we evaluated predictive bias
using regression slopes and mean residual values. We considered results to be statistically significant
at α ≤ 0.05. Because we only collected NDVI readings and vegetation samples over two years at
PL, we were not able to validate our models of inter-annual variation in the timing of peak nitrogen
concentration using an external dataset.

4. Results

4.1. Predictions of Biomass and Nitrogen Biomass

We measured biomass of 355 vegetation samples from 2012–2015 at the CRD. Dry biomass
ranged from 4.6 to 214.0 g m−2; mean values were highest in 2013 (94.0 g m−2) and lowest in 2012
(54.5 g m−2). Biomass of C. subspathacea increased as the season progressed, peaking in late July and
early August before declining slightly, a pattern generally reflected by plot-level NDVI values (Figure 2).
The best-supported biomass model (wi = 0.30) contained the predictor variables SRWV2, precipitation,
temperature, and date (Table 1). The two handheld spectrometer-derived NDVI measures were highly
correlated (Pearson’s correlation coefficients r ≥ 0.993) and explained similar proportions of variation
(R2 = 0.67–0.70; Table 1), but WorldView-2 NDVI band definitions were supported over eMODIS.
Both of the measures derived from the spectrometer were supported over the satellite-derived eMODIS
NDVI (R2 ≤ 0.40; Table 1). Model-averaged parameter estimates were 1.41 (1.22–1.60 95% CI) for
SRWV2, 1.47 (1.26–1.69 95% CI) for SReMO, and 0.77 (0.42–1.12 95% CI) for eMO. Whereas the variables
precipitation, temperature, and date received support, their effects were minimal. The model-averaged
predictions of biomass incorporating environmental variables averaged 1.85 g dry weight m−2 higher
than those from the model using NDVI alone (Figure 3), and the prediction intervals of these two
outputs largely overlapped.
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Table 1. Model rankings and marginal R2 for the relationship between NDVI, precipitation,
temperature, date, and forage biomass of halophytic graminoids at the Colville River Delta, Alaska,
2012–2015. NDVI was derived from handheld spectrometers calculated at two band definitions
(WorldView-2 (SRWV2) and eMODIS (SReMO)) and from eMODIS satellite (eMO). Precip = cumulative
precipitation up to time of sampling, Temp = cumulative temperature up to time of sampling,
and Date = Julian date. The number of parameters (k) includes +1k for an intercept, +1k for residual
estimate, and +1k representing the random effect attributable to unique plots sampled repeatedly across
a season.

Model k ∆AICc wi Marginal R2

SRWV2 + Precip + Temp + Date 7 0 0.30 0.67
SRWV2 + Precip + Date 6 0.52 0.23 0.68
SRWV2 + Temp + Date 6 0.65 0.22 0.67

SRWV2 + Date 5 0.74 0.21 0.67
SReMO + Precip + Temp + Date 7 5.95 0.02 0.68

SReMO + Temp + Date 6 6.08 0.01 0.68
SRWV2 4 6.96 0.01 0.69

SReMO + Date 5 8.56 0 0.69
SReMO + Precip + Date 6 9.03 0 0.70

SReMO 4 13.66 0 0.70
eMO + Temp + Date 6 150.6 0 0.39

eMO + Precip + Temp + Date 7 151.18 0 0.40
Precip + Temp + Date 6 167.87 0 0.36

eMO + Date 5 177.69 0 0.38
eMO + Precip + Date 6 178.48 0 0.38

eMO 4 236.88 0 0.34
Intercept only 3 441.58 0 0.00

The lowest AICc score in the analysis was −416.47
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Figure 2. Biomass (g m−2) of halophytic graminoids (filled symbols) and plot-level NDVI values
(open symbols) by season date at the Colville River Delta, Alaska, 2012–2015. NDVI values plotted here
were derived at WorldView-2 band definitions using a handheld spectrometer. Dates are representative
of non-leap years (i.e., 2013–2015).
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Table 1, a close approximation of model-averaged predictions. The bold dashed line depicts predicted 
biomass as a function of spectrometer-derived WorldView-2 NDVI in the absence of environmental 
variables (i.e., the seventh-ranked model in Table 1), fitting the model log10(biomass) = 0.812 + 
1.762(SRWV2); the light dashed lines delimit the upper and lower 95% prediction intervals of this 
relationship. 
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2014 (2.73%) and lowest in 2013 (2.15%). In contrast to biomass, percent nitrogen values generally 
peaked early in the season, decreased to a nadir in the first week of August, and increased slightly at 
the end of the season. Despite this pattern, values of nitrogen biomass essentially followed those of 
C. subspathacea biomass. Nitrogen and C. subspathacea biomass were highly correlated (Pearson’s 
correlation coefficient r = 0.90), and our modeling efforts thus yielded similar results. Marginal R2 
values indicated that NDVI values derived by handheld spectrometer (R2 0.61–0.66) explained more 
variance than satellite-derived eMODIS NDVI (R2 0.55–0.57). Model rankings were nearly identical 
to those reported in Table 1, with spectrometer-derived WorldView-2 NDVI present in the top-
ranked models (Σwi = 1.00). Given the similarity of these findings to those detailed above for C. 
subspathacea biomass, modeling results are not shown. 

4.2. Validation: Estimation of Biomass at PL Using Spectrometer-Derived NDVI 

Because environmental variables added little predictive power, we used the NDVI-only, plot-
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biomassobserved = 17.17 + 0.676(biomasspredicted) (F1, 240 = 512.5, p < 0.01, R2 = 0.68). On average, the model 
relating NDVI to biomass determined at the CRD overestimated the observed biomass at PL by 25%, 
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Figure 3. Relationship between graminoid biomass (g m−2) and spectrometer-derived NDVI using
WorldView-2 band definitions at the Colville River Delta, Alaska, 2012–2015. Open circles represent
observed values. The bold solid line represents model-averaged predictions of biomass derived from
a multi-model assessment with NDVI, temperature, precipitation, and date as predictor variables.
The light solid lines depict the upper and lower 95% prediction intervals of the top-ranked model
in Table 1, a close approximation of model-averaged predictions. The bold dashed line depicts
predicted biomass as a function of spectrometer-derived WorldView-2 NDVI in the absence of
environmental variables (i.e., the seventh-ranked model in Table 1), fitting the model log10(biomass)
= 0.812 + 1.762(SRWV2); the light dashed lines delimit the upper and lower 95% prediction intervals of
this relationship.

We determined nitrogen concentration for 361 samples of C. subspathacea collected during
2012–2015 at the CRD. Nitrogen (% dry mass) ranged from 0.98% to 4.47%. Mean values were highest
in 2014 (2.73%) and lowest in 2013 (2.15%). In contrast to biomass, percent nitrogen values generally
peaked early in the season, decreased to a nadir in the first week of August, and increased slightly
at the end of the season. Despite this pattern, values of nitrogen biomass essentially followed those
of C. subspathacea biomass. Nitrogen and C. subspathacea biomass were highly correlated (Pearson’s
correlation coefficient r = 0.90), and our modeling efforts thus yielded similar results. Marginal R2

values indicated that NDVI values derived by handheld spectrometer (R2 0.61–0.66) explained more
variance than satellite-derived eMODIS NDVI (R2 0.55–0.57). Model rankings were nearly identical to
those reported in Table 1, with spectrometer-derived WorldView-2 NDVI present in the top-ranked
models (Σwi = 1.00). Given the similarity of these findings to those detailed above for C. subspathacea
biomass, modeling results are not shown.

4.2. Validation: Estimation of Biomass at PL Using Spectrometer-Derived NDVI

Because environmental variables added little predictive power, we used the NDVI-only,
plot-based model derived at the CRD (log10(biomass) = 0.812 + 1.762(SRWV2)) to assess the
accuracy of the relationship at a different location. Specifically, we applied this model to 242
spectrometer-derived NDVI values and associated vegetation biomass measurements from PL.
Back-transformed predictions are plotted against observed values in Figure 4, a relationship described
by the model biomassobserved = 17.17 + 0.676(biomasspredicted) (F1, 240 = 512.5, p < 0.01, R2 = 0.68).
On average, the model relating NDVI to biomass determined at the CRD overestimated the observed
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biomass at PL by 25%, with generally higher absolute errors at higher NDVI values (and hence,
biomass; Figure 4).Remote Sens. 2017, 9, 1234  11 of 21 

 

 
Figure 4. Relationship between observed biomass (g m−2) of halophytic graminoids from Pt. Lonely, 
Alaska, 2012–2013, and the predicted biomass (g m−2) based on the model log10(biomass) = 0.812 + 
1.762(SRWV2) where NDVI values were derived at WorldView-2 (SRWV2) band definitions using a 
handheld spectrometer at the Colville River Delta, Alaska, 2012–2015. The solid line through the 
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biomassobserved = 17.17 + 0.676(biomasspredicted). 

4.3. NDVI as a Phenology Metric 

4.3.1. Seasonal Dynamics of NDVI and Percent Nitrogen 

The shape of seasonal trends in NDVI varied annually for all NDVI variables, with median 
yearly peak values ranging from ~0.35 to 0.50 for eMO and from about 0.60 to 0.95 for spectrometer-
derived NDVI variables (Figure 5A–C). In most years, all three NDVI curves tended to gently level 
off after their peak, but clear late-season declines occurred in both 2011 and 2015 (Figure 5A–C). There 
was no clear best fitting model that described eMODIS NDVI phenology, but seasonal NDVI patterns 
based on plot-scale measurements (SRWV2 and SReMO) were best described by lognormal curves (Table A1). The 
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curves had slightly lower amplitudes than SReMO in most years, and peaked several days later in 2012 
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Figure 4. Relationship between observed biomass (g m−2) of halophytic graminoids from
Pt. Lonely, Alaska, 2012–2013, and the predicted biomass (g m−2) based on the model log10(biomass)
= 0.812 + 1.762(SRWV2) where NDVI values were derived at WorldView-2 (SRWV2) band definitions
using a handheld spectrometer at the Colville River Delta, Alaska, 2012–2015. The solid line through
the origin represents the slope of a 1:1 relationship, and the dotted line represents the actual relationship
biomassobserved = 17.17 + 0.676(biomasspredicted).

4.3. NDVI as a Phenology Metric

4.3.1. Seasonal Dynamics of NDVI and Percent Nitrogen

The shape of seasonal trends in NDVI varied annually for all NDVI variables, with median yearly
peak values ranging from ~0.35 to 0.50 for eMO and from about 0.60 to 0.95 for spectrometer-derived
NDVI variables (Figure 5A–C). In most years, all three NDVI curves tended to gently level off after
their peak, but clear late-season declines occurred in both 2011 and 2015 (Figure 5A–C). There was no
clear best fitting model that described eMODIS NDVI phenology, but seasonal NDVI patterns based
on plot-scale measurements (SRWV2 and SReMO) were best described by lognormal curves (Table A1).
The two spectrometer-derived NDVI variables followed similar seasonal trajectories, although SRWV2

curves had slightly lower amplitudes than SReMO in most years, and peaked several days later in 2012
and 2014 (Figure 5B,C).

Curves describing seasonal change in percent nitrogen also showed inter-annual variation. In all
years, percent nitrogen peaked within two weeks of the beginning of data collection, and declined
gradually over the course of the summer, before showing a slight increase around 8 August in most
years (Figure 5D).
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polynomial. Dates are representative of non-leap years (i.e., 2011, 2013–2015). 
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There was substantial variability in the date of peak percent nitrogen among years (15 June–5 
July; Figure 5D), which was predicted with different degrees of accuracy by each of the three 
phenology metrics (Figure 6). Overall, eMO predictions showed the strongest correlation with DOY 
of peak percent nitrogen. The two phenology metrics that were related to the timing of the early-
season increase in NDVI, max Δ and 50% max, were both strong and significant predictors of 
interannual variation in date of peak percent nitrogen (R2 = 0.84, p < 0.02; Figure 6A,D). In contrast, 
no phenology metric derived from spectrometer measurements of NDVI was a significant predictor 
of peak percent nitrogen at α ≤ 0.05 (Figure 6). The date of eMO 50% max occurred on average 3.4 
days (range = 3–5 days) earlier than the date of eMO max Δ. When predicted peak percent nitrogen 
was regressed against observed dates, the slope of the relationship was slightly less than one for all 
phenology metrics and NDVI variables, but all models showed low average residual bias (Figure 6).  

Figure 5. Seasonal trends in NDVI and percent nitrogen of halophytic graminoids at the Colville River
Delta, Alaska, 2011–2015. Plots represent: (A) NDVI values derived from eMODIS satellite imagery
(eMO); (B) NDVI values derived from handheld spectrometer using eMODIS band definitions (SReMO;
(C) NDVI values derived from handheld spectrometer using Worldview-2 band definitions (SRWV2);
and (D) percent nitrogen in above-ground vegetation (%N). Metrics of NDVI phenology included date
of maximum (max), half maximum (50% max), and maximum rate of change (max ∆). Annual seasonal
trends for NDVI (A–C) were based on model-averaged predictions from Gaussian and lognormal
non-linear regression while those for percent nitrogen (D) were based on a third-order polynomial.
Dates are representative of non-leap years (i.e., 2011, 2013–2015).

4.3.2. Phenology Metric Estimation and Performance

There was substantial variability in the date of peak percent nitrogen among years (15 June–5 July;
Figure 5D), which was predicted with different degrees of accuracy by each of the three phenology
metrics (Figure 6). Overall, eMO predictions showed the strongest correlation with DOY of peak
percent nitrogen. The two phenology metrics that were related to the timing of the early-season increase
in NDVI, max ∆ and 50% max, were both strong and significant predictors of interannual variation
in date of peak percent nitrogen (R2 = 0.84, p < 0.02; Figure 6A,D). In contrast, no phenology metric
derived from spectrometer measurements of NDVI was a significant predictor of peak percent nitrogen
at α ≤ 0.05 (Figure 6). The date of eMO 50% max occurred on average 3.4 days (range = 3–5 days)
earlier than the date of eMO max ∆. When predicted peak percent nitrogen was regressed against
observed dates, the slope of the relationship was slightly less than one for all phenology metrics and
NDVI variables, but all models showed low average residual bias (Figure 6).
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Worldview2 (SRWV2) band definitions. DOY of peak nitrogen was estimated by fitting 3rd-order 
polynomials to seasonal percent nitrogen measurements. Percent nitrogen predictions were 
generated from linear regression models of the general form (date peak vegetation %N ~ β0 + β1x 
NDVI phenology index). Solid lines indicate a perfect 1:1 relationship, and dashed lines show the best 
fit lines from regression of predicted = β0 + β1x observed. Dates are representative of non-leap years 
(i.e., 2011, 2013–2015). 
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5.1. NDVI as an Estimator of Biomass and Nitrogen 

We found that the handheld spectrometer-derived NDVI was a useful estimator of seasonal 
changes in aboveground biomass and nitrogen biomass as measured in plots of C. subspathacea-
dominated wetlands on the ACP. Models including measures of NDVI accounted for about 2/3 of the 
variance associated with spatial and temporal differences in biomass in these wetlands. Our results 
are consistent with those of Boelman et al. [25] who showed that handheld spectrometer-derived 

Figure 6. Comparisons of predicted and observed day of year (DOY) for peak nitrogen concentration
(max %N) of halophytic graminoids across different NDVI phenology indices at the Colville River
Delta, Alaska 2011–2015. NDVI phenology indices included DOY of maximum rate of change (DOY
max ∆), half maximum (DOY 50% max), and maximum (max NDVI) and were generated from eMODIS
satellite data (eMO), and handheld spectrometers with either eMODIS (SReMO) or Worldview2 (SRWV2)
band definitions. DOY of peak nitrogen was estimated by fitting 3rd-order polynomials to seasonal
percent nitrogen measurements. Percent nitrogen predictions were generated from linear regression
models of the general form (date peak vegetation %N ~β0 + β1x NDVI phenology index). Solid lines
indicate a perfect 1:1 relationship, and dashed lines show the best fit lines from regression of predicted
= β0 + β1x observed. Dates are representative of non-leap years (i.e., 2011, 2013–2015).

5. Discussion

5.1. NDVI as an Estimator of Biomass and Nitrogen

We found that the handheld spectrometer-derived NDVI was a useful estimator of
seasonal changes in aboveground biomass and nitrogen biomass as measured in plots of
C. subspathacea-dominated wetlands on the ACP. Models including measures of NDVI accounted
for about 2/3 of the variance associated with spatial and temporal differences in biomass in these
wetlands. Our results are consistent with those of Boelman et al. [25] who showed that handheld
spectrometer-derived NDVI was a good estimator for biomass of freshwater graminoid wetlands
located in the foothills of the ACP. Similarly, Hope et al. [26] found that the majority of the variation in
NDVI readings was attributed to changes in biomass of ACP moist tussock and dry heath communities,



Remote Sens. 2017, 9, 1234 14 of 21

and Gamon, et al. [57] found that NDVI was strongly correlated with nitrogen mass per unit area
across a variety of herbaceous and woody plant communities. Our fine (<1 m2) scale assessment
substantially outperformed the moderate (250 × 250 m) spatial resolution of the eMODIS-derived
NDVI for assessing biomass of C. subspathacea within sample plots. Soil temperature, precipitation, and
date variables were supported in our modeling approach, but predictions from models incorporating
these variables differed minimally in average aboveground biomass (<2 g) from those including
NDVI alone (Figure 3), indicating that spectrometer-derived NDVI alone was a good estimator for
aboveground biomass. Although soil temperature and precipitation influence productivity of arctic
tundra plants [29,48], NDVI appeared to capture most of the variation in plant biomass. Nevertheless,
the strong correlation between NDVI and nitrogen biomass reflected the fact that nitrogen biomass
and total biomass were highly correlated. As such, our models should not be used to infer correlation
between NDVI and plant tissue percent nitrogen, which showed seasonal patterns distinct from those
of NDVI and biomass.

The use of WorldView2 band definitions rather than eMODIS band definitions improved model
performance for predicting biomass with our handheld spectrometer. These two band definitions were
similar in their position and range in the red band but differed considerably in these definitions in the
NIR band. Galvao et al. [58] showed that a NIR band that was placed at the shortest wavelength in the
750–1100 nm interval increased the NDVI contrast between green vegetation and senescent vegetation
or soils. Given that clipped plots contained up to 20% of senescent plant material, we speculate that the
lower position (WorldView2: 832 nm; eMODIS: 878 nm) and the wider range (WorldView2: 125 nm;
eMODIS: 43 nm) of the NIR band for WorldView2 may have improved detection of live plants and
increased accuracy of C. subspathacea biomass predictions in our study.

5.2. Sources of Error

Habitat heterogeneity at the larger scale of the eMODIS satellite-derived NDVI was likely a major
reason for its poor performance (R2 = 0.34–0.40) to predict seasonal changes in aboveground biomass.
Halophytic wetlands were not uniformly distributed across the landscape and the 250 × 250 m
footprint of the eMODIS spectral signal likely encompassed other communities with different plant
species (e.g., freshwater graminoids, dwarf scrubs) and land cover types (i.e., water bodies, moist soils),
thus reducing NDVI accuracy [25,26,35,39]. Further, satellite-derived spectral data is especially prone
to degradation and alteration in the Arctic from frequent cloud cover, high sun angle, and suboptimal
sun-object-sensor geometry that may affect NDVI values [59]. At the high resolution of the handheld
spectrometer, small inter-plot differences in plant density and species composition may influence the
NDVI values over the study period. But in our case, clipped plots were nearly exclusively (≥98%)
C. subspathacea, therefore any errors associated in the spectral readings and biomass were likely
associated with differentiating between live plants and dead material and moist soils.

The spatial scale of habitat heterogeneity is especially relevant in the context of our biomass
validation exercise. We used spectrometer readings with Worldview2 band definitions to derive
a model that predicted C. subspathacea biomass at the CRD. However, when we applied the same
model to spectrometer readings in functionally similar stands of C. subspathacea at PL, biomass was
overestimated by 25%. We suspect this positive bias was caused primarily by differences in plant
characteristics between sites. Specifically, average biomass of C. subspathacea in plots at PL (98.5 g
dry weight m−2) were substantially higher than those at the CRD (68.0 g dry weight m−2). Likewise,
the associated NDVI values were also higher at PL (0.70) than at CRD (0.53). As such, biomass and
NDVI values measured at PL occurred at the high end and outside the range of values derived for the
predictive model at the CRD. Thus, although the NDVI model predicted biomass with an adequate
degree of accuracy at the CRD, the positive bias in predicted values when applied at PL underscores
the importance of site-specific validation when expanding the geographic scope of such models.
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5.3. Ndvi as a Phenology Metric (Objective 2): Low Resolution Application

Compared to fine-scaled estimates obtained from the handheld spectrometer, the satellite-
derived NDVI data provided more accurate estimates for the timing of peak nitrogen in
C. subspathacea-dominated wetlands on the ACP (Figure 6). The timing of peak nitrogen concentration
is an essential parameter for understanding reproductive success of arctic herbivores. Failure by an
animal to adjust the timing of reproduction to match optimal availability of high quality food resources
on breeding areas (i.e., “phenology mismatch”) can lead to poor reproductive success [60–62], slower
growth of young [61,63], and ultimately lower survival and recruitment [61,64,65]. The timing of peak
nitrogen concentration in halophytic wetlands is not only important for assessing wildlife habitat
quality, but is variable enough from year to year to require frequent monitoring. Our results show
that this monitoring can be accomplished accurately and cost-effectively using publicly available
satellite-derived NDVI products. Strong correlations between satellite NDVI and nitrogen phenology
have also been demonstrated in moist non-acidic tundra communities of the High Arctic similar
to the lower-quality freshwater graminoid wetlands near our study site [35], suggesting that our
approach might be broadly applicable for monitoring nitrogen phenology in a wider range of arctic
plant communities.

Beyond demonstrating the general applicability of NDVI as a tool to monitor the timing of
peak nitrogen, our results also provide insight into how methodological choices influence model
results. Some choices, like the selection of spectral band definitions for NDVI calculation, had little
influence on the predictive power of NDVI phenology metrics. We also found that NDVI metrics
related to the period of rapid spring growth (50% max and max ∆) were generally better indicators of
nitrogen phenology than the date of peak NDVI, which is consistent with the idea that plants prioritize
growth over structural stability during rapid early-season growth, resulting in low tissue C:N ratios.
Furthermore, we demonstrated that 50% max was a reasonable approximation of max ∆ (the period
of peak spring green-up), which requires the ability to solve for the first derivative of a seasonal
phenology curve. Previous studies have made, but not explicitly tested this assumption (e.g., [34,35]).
Finally, and most surprisingly, we demonstrate that the use of a handheld spectrometer to measure
NDVI at a finer spatial resolution did not result in better prediction of nitrogen phenology.

5.4. Performance of Satellite vs. Plot-Level NDVI Phenology Metrics

The strong performance of our eMODIS phenology models was counterintuitive because 250 × 250 m
eMODIS pixels contained at least some water and non-target vegetation, including freshwater graminoid
wetlands dominated by Carex aquatilis. As noted above, this heterogeneity likely contributed to
the poor predictive power of linear models linking eMODIS NDVI to aboveground biomass,
because NDVI-biomass relationships are specific to the vegetation type. However, common plant
communities on the ACP show similar temporal trends in NDVI over the course of the growing
season, with synchronous peaks in any given year [48]. Moreover, these trends have been shown
to be correlated with regional average air and soil temperature patterns [48]. We suspect that
eMODIS-derived phenology metrics may have been relatively insensitive to spatial heterogeneity
in land cover within a pixel because all local vegetation types probably exhibited similar NDVI
seasonality. If true, this suggests that our models linking NDVI to nitrogen phenology should be less
site-specific than our models linking NDVI to biomass. However, because there were only two years
of data from PL, we were unable to validate our inter-annual nitrogen phenology results with data
from an independent site. Therefore, we caution against the extrapolation of our models to new study
areas without estimating site-specific model parameters. In particular, NDVI-nitrogen phenology
relationships could differ in areas at substantially higher or lower latitudes, where the duration and
onset of the growing season are very different, or when the sampling period covers a different portion
of the growing period. Although we anticipate that strong relationships between NDVI and nitrogen
phenology would be detected in both scenarios, the shape of the best-fit curves defining seasonal trends
in NDVI and nitrogen could be affected, resulting in biased estimates of peak nitrogen phenology.
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An additional caveat to our results is that we do not have a definitive explanation for why eMODIS
NDVI outperformed NDVI derived from the spectrometer as an estimator of nitrogen phenology.
While local factors like soil properties can affect plot-scale biomass measurements [66], they may have
little influence on seasonal nitrogen accumulation. In particular, localized grazing pressure could
reduce the standing crop and therefore the NDVI value of any plot, yet previous research suggests that
the effect of grazing on tissue nitrogen content in halophytic grazing wetlands is minimal for most of
the growing season [67,68].

6. Conclusions

Our results support the use of plot-level NDVI derived from a handheld spectrometer as an
alternative to intensive vegetation sampling as a means to monitor patterns in biomass, but only
following site-specific validation. Satellite-derived NDVI shows promise for predicting seasonal
timing of peak nitrogen, but both plot- and satellite-derived measures of NDVI were poor estimators
of seasonal changes in nitrogen, demonstrating the need for alternative techniques to track this
critical habitat parameter. Our study highlights the overall importance of matching the scale of NDVI
measurements to the vegetation properties being studied (e.g., biomass vs. nitrogen phenology),
and the scales at which those properties are regulated. Although previous studies have contrasted
satellite and plot-scale NDVI as estimators of arctic vegetation biomass [2], we are unaware of other
work that explicitly contrasts the predictive power of NDVI metrics for properties of vegetation
across multiple scales. Given the current evidence for rapid changes in physical and environmental
phenologyin the Arctic, conflicting consequences of a phenology mismatch between migratory
herbivores and their food resources [69,70], and an interest in forecasting the future of plant forage
quality and quantity for herbivores [6], there is a compelling need to improve monitoring of forage
plant quantity and quality at high latitudes.
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Appendix A

Table A1. Multi-model selection results for nonlinear curves used to predict seasonal patterns in
NDVI and percent nitrogen in halophytic graminoids at the Colville River Delta, Alaska, 2011–2015.
Results are derived from models fitted with all available data (pooled years) to show overall support
for each curve function. eMODIS (eMO) model selection was based on a single pixel value for each date
x year combination (n = 46). Spectrometer NDVI curves with eMODIS band definitions (SReMO) and
WorldView 2 band definitions (SRWV2) were fit using measurements for all plots at all sampling dates
in all years (n = 640). Lowest AICc scores: −108.71 (eMO), −1027.26 (SReMO), and −972.37 (SRWV2).

Variable Model df ∆AICc ωi

eMO Gaussian 4 0.69 0.41
eMO Lognormal 4 0.00 0.59
eMO Null 2 27.61 0.00

SReMO Gaussian 4 5.78 0.05
SReMO Lognormal 4 0.00 0.95
SReMO Null 2 322.43 0.00

SRWV2 Gaussian 4 7.37 0.02
SRWV2 Lognormal 4 0.00 0.98
SRWV2 Null 2 348.13 0.00
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