Analysis of the Sensitivity of Spring Wheat and White Mustard Seedlings to the Essential Oil of Parsley Seeds †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farzaei, M.H.; Abbasabadi, Z.; Ardekani, M.R.S.; Rahimi, R.; Farzaei, F. Parsley: A review of ethnopharmacology, phytochemistry and biological activities. J. Tradit. Chin. Med. 2013, 33, 815–826. [Google Scholar] [CrossRef] [Green Version]
- Parry, J.; Hao, Z.; Luther, M.; Su, L.; Zhou, K.; Yu, L.L. Characterization of cold-pressed onion, parsley, cardamom, mullein, roasted pumpkin, and milk thistle seed oils. J. Am. Oil Chem. Soc. 2006, 83, 847–854. [Google Scholar] [CrossRef]
- Simon, J.E.; Quinn, J. Characterization of essential oil of parsley. J. Agric. Food Chem. 1988, 36, 467–472. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Daferera, D.; Polissiou, M.G.; Passam, H.C. The effect of water deficit stress on the growth, yield and composition of essential oils of parsley. Sci. Hortic. 2008, 115, 393–397. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, F.; Wang, X.; Yao, H.Y. Evaluation of antioxidant activity of parsley (Petroselinum crispum) essential oil and identification of its antioxidant constituents. Food Res. Int. 2006, 39, 833–839. [Google Scholar] [CrossRef]
- Kreydiyyeh, S.I.; Usta, J.; Kaouk, I.; Al-Sadi, R. The mechanism underlying the laxative properties of parsley extract. Phytomedicine 2001, 8, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Massango, H.G.L.L.; Faroni, L.R.A.; Haddi, K.; Heleno, F.F.; Jumbo, L.V.; Oliveira, E.E. Toxicity and metabolic mechanisms underlying the insecticidal activity of parsley essential oil on bean weevil, Callosobruchus maculatus. J. Pest Sci. 2017, 90, 723–733. [Google Scholar] [CrossRef]
- Dhima, K.; Vasilakoglou, I.; Garane, V.; Ritzoulis, C.; Lianopoulou, V.; Panou-Philotheou, E. Competitiveness and essential oil phytotoxicity of seven annual aromatic plants. Weed Sci. 2010, 58, 457–465. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Mohsin, S.M.; Bhuyan, M.B.; Bhuiyan, T.F.; Anee, T.I.; Masud, A.A.C.; Nahar, K. Phytotoxicity, environmental and health hazards of herbicides: Challenges and ways forward. In Agrochemicals Detection, Treatment and Remediation, 1st ed.; Prasad, M.N.V., Ed.; Butterworth-Heinemann: Oxford, UK, 2020; pp. 55–99. [Google Scholar]
- Lengai, G.M.; Muthomi, J.W.; Mbega, E.R. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Sci. Afr. 2020, 7, e00239. [Google Scholar] [CrossRef]
- Damalas, C.A.; Koutroubas, S.D. Botanical Pesticides for Eco-Friendly Pest Management: Drawbacks and Limitations. In Pesticides in Crop Production: Physiological and Biochemical Action, 1st ed.; Srivastava, P.K., Singh, V.P., Singh, A., Tripathi, D.K., Singh, S., Prasad, S.M., Chauhan, D.K., Eds.; Wiley: Hoboken, NJ, USA, 2020; pp. 181–193. [Google Scholar]
- Synowiec, A.; Kalemba, D.; Drozdek, E.; Bocianowski, J. Phytotoxic potential of essential oils from temperate climate plants against the germination of selected weeds and crops. J. Pest Sci. 2017, 90, 407–419. [Google Scholar] [CrossRef]
- Fierascu, R.C.; Fierascu, I.C.; Dinu-Pirvu, C.E.; Fierascu, I.; Paunescu, A. The application of essential oils as a next-generation of pesticides: Recent developments and future perspectives. Zeitsch. Naturforsch. C 2020, 75, 183–204. [Google Scholar] [CrossRef] [PubMed]
- Baj, T.; Sieniawska, E.; Kowalski, R.; Wesolowski, M.; Ulewicz-Magulska, B. Effectiveness of the deryng and clevenger-type apparatus in isolation of various types of components of essential oil from the Mutelina purpurea Thell. flowers. Acta Pol. Pharm. 2015, 72, 507–515. [Google Scholar] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Acimovic, M.G.; Cvetkovic, M.T.; Stankowic, J.M.; Tesevic, V.V.; Todosijevic, M.M. Headspace Analysis of Volatile Compounds From Fruits of Selected Vegetable Species of Apiaceae Family. In Phytochemicals in Vegetables: A Valuable Source of Bioactive Compounds, 1st ed.; Petropoulos, S.A., Ferreira, I.C.F.R., Barros, L., Eds.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2018; pp. 209–235. [Google Scholar]
- R Core Team. R: A Language Andenvironment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 2 March 2020).
- Alajlouni, A.M.; Al_Malahmeh, A.J.; Kiwamoto, R.; Wesseling, S.; Soffers, A.E.; Al-Subeihi, A.A.; Rietjens, I.M. Mode of action based risk assessment of the botanical food-borne alkenylbenzene apiol from parsley using physiologically based kinetic (PBK) modelling and read-across from safrole. Food Chem. Toxicol. 2016, 89, 138–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lichtenstein, E.P.; Liang, T.T.; Schulz, K.R.; Schnoes, H.K.; Carter, G.T. Insecticidal and synergistic components isolated from dill plants. J. Agric. Food Chem. 1974, 22, 658–664. [Google Scholar] [CrossRef] [PubMed]
- Mert, A.; Timur, M. Essential oil and fatty acid composition and antioxidant capacity and total phenolic content of parsley seeds (Petroselinum crispum) grown in Hatay Region. Indian J. Pharm. Educ. Res. 2017, 51, 437–440. [Google Scholar] [CrossRef] [Green Version]
- Kurowska, A.; Gałazka, I. Essential oil composition of the parsley seed of cultivars marketed in Poland. Flavour Fragr. J. 2006, 21, 143–147. [Google Scholar] [CrossRef]
- Meepagala, K.M.; Sturtz, G.; Wedge, D.E.; Schrader, K.K.; Duke, S.O. Phytotoxic and antifungal compounds from two Apiaceae species, Lomatium californicum and Ligusticum hultenii, rich sources of Z-ligustilide and apiol, respectively. J. Chem. Ecol. 2005, 31, 1567–1578. [Google Scholar] [CrossRef] [PubMed]
- Akhter, M.J.; Kudsk, P.; Mathiassen, S.K.; Melander, B. Rattail fescue (Vulpia myuros) interference and seed production as affected by sowing time and crop density in winter wheat. Weed Sci. 2021, 69, 52–61. [Google Scholar] [CrossRef]
- Synowiec, A.; Krajewska, A. Soil or Vermiculite-Applied Microencapsulated Peppermint Oil Effects on White Mustard Initial Growth and Performance. Plants 2020, 9, 448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound | RIexp 1 | RIlit 2 | [%] |
---|---|---|---|
α-Thujene | 928 | 926 | 0.3 |
α-Pinene | 932 | 936 | 37.1 |
Camphene | 946 | 950 | 0.2 |
Sabinene | 970 | 973 | 1.0 |
β-Pinene | 976 | 978 | 26.2 |
p-Cymene | 1012 | 1015 | 0.2 |
β-Phellandrene | 1020 | 1024 | 0.7 |
Limonene | 1023 | 1025 | 0.5 |
γ-Terpinene | 1049 | 1051 | 0.7 |
α-Terpinyl acetate | 1333 | 1335 | 0.1 |
(E)-β-Farnesene | 1447 | 1446 | 0.1 |
Myristicin | 1490 | 1489 | 7.1 |
Apiol | 1651 | 1649 | 23.8 |
Dose of EO (g per Dish) | cv. Harenda | cv. Blondynka | ||||
---|---|---|---|---|---|---|
Germinated [%] | Leaf [mm] | Root [mm] | Germinated [%] | Leaf [mm] | Root [mm] | |
0 | 100 ± 0 | 62.2 ± 2.25 a 1 | 100 ± 9.69 a | 91.7 ± 3.6 a | 24.4 ± 3.91 a | 48.3 ± 1.29 a |
0.004 | 98.3 ± 1.36 | 5.38 ± 0.47 b | 3.47 ± 0.36 b | 11.7 ± 5.93 b | 3.05 ± 0.68 b | 4.88 ± 1.31 b |
0.007 | 98.3 ± 1.36 | 3.84 ± 0.24 b | 2.47 ± 0.16 b | 33.3 ± 12.1 b | 1.95 ± 0.39 b | 3.04 ± 0.84 b |
0.01 | 95.0 ± 0 | 2.21 ± 0.35 b | 1.37 ± 0.02 b | 18.3 ± 3.6 b | 1.43 ± 0.19 b | 1.50 ± 0.11 b |
0.02 | 83.3 ± 1.36 | 1.66 ± 0.24 b | 1.32 ± 0.06 b | 16.7 ± 1.36 b | 1.17 ± 0.14 b | 1.32 ± 0.04 b |
0.03 | 63.3 ± 9.81 | 1.33 ± 0.16 b | 1.22 ± 0.11 b | 13.3 ± 2.72 b | 1.33 ± 0.14 b | 1.10 ± 0.01 b |
ED50 | 0.04 | 0.002 | 0.0003 | 0.002 | 0.0004 | 0.003 |
Dose of EO (g per Dish) | 2018 | 2020 | ||||
---|---|---|---|---|---|---|
Germinated [%] | Shoot [mm] | Root [mm] | Germinated [%] | Shoot [mm] | Root [mm] | |
0 | 100 ± 0 a 1 | 31.6 ± 0.65 a | 22.9 ± 1.35 a | 93.3 ± 1.36 a | 21.2 ± 0.24 a | 13.2 ± 0.99 a |
0.004 | 43.3 ± 3.6 c | 13.2 ± 0.91 b | 12.0 ± 2.45 b | 63.3 ± 2.72 b | 4.13 ± 0.67 b | 9.41 ± 0.54 b |
0.007 | 65.0 ± 6.24 b | 10.9 ± 0.82 b | 10.3 ± 1.80 b | 51.7 ± 9.53 b | 5.46 ± 0.22 b | 6.11 ± 0.31 bc |
0.01 | 70.0 ± 2.36 b | 9.30 ± 1.03 b | 4.52 ± 0.87 c | 58.3 ± 1.36 b | 6.77 ± 0.04 b | 5.25 ± 0.05 c |
0.02 | 75.0 ± 4.08 b | 7.97 ± 0.34 b | 5.21 ± 0.71 c | 50.0 ± 6.24 b | 6.83 ± 0.46 b | 5.02 ± 0.43 c |
0.03 | 65.0 ± 6.24 b | 9.36 ± 1.60 b | 8.82 ± 1.18 b | 35.0 ± 8.50 c | 6.38 ± 0.29 b | 5.16 ± 0.25 c |
ED50 | 0.03 | 0.0001 | 0.003 | 0.02 | 0.0004 | 0.0004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jop, B.; Wawrzyńczak, K.; Polaszek, K.; Synowiec, A. Analysis of the Sensitivity of Spring Wheat and White Mustard Seedlings to the Essential Oil of Parsley Seeds. Biol. Life Sci. Forum 2021, 3, 12. https://doi.org/10.3390/IECAG2021-09710
Jop B, Wawrzyńczak K, Polaszek K, Synowiec A. Analysis of the Sensitivity of Spring Wheat and White Mustard Seedlings to the Essential Oil of Parsley Seeds. Biology and Life Sciences Forum. 2021; 3(1):12. https://doi.org/10.3390/IECAG2021-09710
Chicago/Turabian StyleJop, Beata, Karolina Wawrzyńczak, Karolina Polaszek, and Agnieszka Synowiec. 2021. "Analysis of the Sensitivity of Spring Wheat and White Mustard Seedlings to the Essential Oil of Parsley Seeds" Biology and Life Sciences Forum 3, no. 1: 12. https://doi.org/10.3390/IECAG2021-09710
APA StyleJop, B., Wawrzyńczak, K., Polaszek, K., & Synowiec, A. (2021). Analysis of the Sensitivity of Spring Wheat and White Mustard Seedlings to the Essential Oil of Parsley Seeds. Biology and Life Sciences Forum, 3(1), 12. https://doi.org/10.3390/IECAG2021-09710