Levosimendan in ECMO: A Paradigm Shift or an Adjunctive Option?
Abstract
1. Introduction
2. Relevant Sections
2.1. Pharmacologic Profile of Levosimendan
2.2. Pathophysiological Rationale for Levosimendan in ECMO
2.3. Clinical Evidence in ECMO Patients
2.4. Pharmacological and Technical Challenges Under ECMO
2.5. Timing and Dosing Strategies
2.5.1. Timing of Administration
- Pre-emptive (early) administration involves initiating Levosimendan infusion shortly after ECMO cannulation in patients with cardiogenic shock or post-cardiotomy failure, with the aim of promoting myocardial protection and reducing catecholamine dependence during the early stabilization phase. This approach is supported by observational data suggesting improved ventricular recovery and lower mortality when Levosimendan is introduced within the first 24 h of ECMO initiation [39,40].
- Pre-weaning administration, the most commonly adopted approach, consists of initiating Levosimendan 12–24 h before planned ECMO discontinuation. The rational lies in enhancing residual ventricular contractility and facilitating liberation from mechanical support by leveraging both the parent compound’s inotropic action and the prolonged activity of its metabolite OR-1896. Several studies, indicate that pre-weaning infusion correlates with higher rates of successful decannulation and reduced short-term mortality [17,56].
2.5.2. Dosing Consideration
2.5.3. Safety Profile and Hemodynamic Consideration
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ECMO | Extracorporeal membrane oxygenation |
| V-A ECMO | Veno-arterial extracorporeal membrane oxygenation |
| LVEF | Left ventricular ejection fraction |
| IABP | Intra-aortic balloon pump |
References
- Koziol, K.J.; Isath, A.; Rao, S.; Gregory, V.; Ohira, S.; Van Diepen, S.; Lorusso, R.; Krittanawong, C. Extracorporeal Membrane Oxygenation (VA-ECMO) in Management of Cardiogenic Shock. J. Clin. Med. 2023, 12, 5576. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guglin, M.; Zucker, M.J.; Bazan, V.M.; Bozkurt, B.; El Banayosy, A.; Estep, J.D.; Gurley, J.; Nelson, K.; Malyala, R.; Panjrath, G.S.; et al. Venoarterial ECMO for Adults: JACC Scientific Expert Panel. J. Am. Coll. Cardiol. 2019, 73, 698–716. [Google Scholar] [CrossRef] [PubMed]
- Tsangaris, A.; Alexy, T.; Kalra, R.; Kosmopoulos, M.; Elliott, A.; Bartos, J.A.; Yannopoulos, D. Overview of Veno-Arterial Extracorporeal Membrane Oxygenation (VA-ECMO) Support for the Management of Cardiogenic Shock. Front. Cardiovasc. Med. 2021, 8, 686558. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heymer, J.; Hein, A.; Ott, M.; Schilling, T.; Räpple, D. Weaning assessment of veno-arteriovenous (V-AV) extracorporeal membrane oxygenation (ECMO). Intensive Care Med. Exp. 2023, 11, 47. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hatami, S.; Hefler, J.; Freed, D.H. Inflammation and Oxidative Stress in the Context of Extracorporeal Cardiac and Pulmonary Support. Front. Immunol. 2022, 13, 831930. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pollesello, P.; Papp, Z.; Papp, J.G. Calcium sensitizers: What have we learned over the last 25 years? Int. J. Cardiol. 2016, 203, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Milligan, D.J.; Fields, A.M. Levosimendan: Calcium sensitizer and inodilator. Anesthesiol. Clin. 2010, 28, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Burkhoff, D.; Rich, S.; Pollesello, P.; Papp, Z. Levosimendan-induced venodilation is mediated by opening of potassium channels. ESC Heart Fail. 2021, 8, 4454–4464. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ellouze, O.; Soudry Faure, A.; Radhouani, M.; Abou-Arab, O.; Besnier, E.; Moussa, M.; Cransac, A.; Ksiazek, E.; Fischer, M.O.; Mertes, P.M.; et al. Levosimendan in venoarterial ECMO weaning. Rational and design of a randomized double blind multicentre trial. ESC Heart Fail. 2021, 8, 3339–3347. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grossini, E.; Farruggio, S.; Pierelli, D.; Bolzani, V.; Rossi, L.; Pollesello, P.; Monaco, C. Levosimendan Improves Oxidative Balance in Cardiogenic Shock/Low Cardiac Output Patients. J. Clin. Med. 2020, 9, 373. [Google Scholar] [CrossRef]
- Cheng, V.; Abdul-Aziz, M.H.; Roberts, J.A.; Shekar, K. Optimising drug dosing in patients receiving extracorporeal membrane oxygenation. J. Thorac. Dis. 2018, 10 (Suppl. 5), S629–S641. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Erdei, N.; Papp, Z.; Pollesello, P.; Edes, I.; Bagi, Z. The levosimendan metabolite OR-1896 elicits vasodilation by activating the K(ATP) and BK(Ca) channels in rat isolated arterioles. Br. J. Pharmacol. 2006, 148, 696–702. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kipka, H.; Schaflinger, R.; Tomasi, R.; Pogoda, K.; Mannell, H. The Effects of the Levosimendan Metabolites OR-1855 and OR-1896 on Endothelial Pro-Inflammatory Responses. Biomedicines 2023, 11, 918. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Haikala, H.; Nissinen, E.; Etemadzadeh, E.; Levijoki, J.; Lindén, I.B. Troponin C-mediated calcium sensitization induced by levosimendan does not impair relaxation. J. Cardiovasc. Pharmacol. 1995, 25, 794–801. [Google Scholar] [CrossRef] [PubMed]
- Lehtonen, L. Levosimendan: A calcium-sensitizing agent for the treatment of patients with decompensated heart failure. Curr. Heart Fail. Rep. 2004, 1, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Gödény, I.; Pollesello, P.; Edes, I.; Papp, Z.; Bagi, Z. Levosimendan and its metabolite OR-1896 elicit KATP channel-dependent dilation in resistance arteries In Vivo. Pharmacol. Rep. 2013, 65, 1304–1310. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaddoura, R.; Omar, A.S.; Ibrahim, M.I.M.; Alkhulaifi, A.; Lorusso, R.; Elsherbini, H.; Soliman, O.; Caliskan, K. The Effectiveness of Levosimendan on Veno-Arterial Extracorporeal Membrane Oxygenation Management and Outcome: A Systematic Review and Meta-Analysis. J. Cardiothorac. Vasc. Anesth. 2021, 35, 2483–2495. [Google Scholar] [CrossRef] [PubMed]
- Pollesello, P.; Papp, Z. The cardioprotective effects of levosimendan: Preclinical and clinical evidence. J. Cardiovasc. Pharmacol. 2007, 50, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Das, B.; Sarkar, C. Pharmacological preconditioning by levosimendan is mediated by inducible nitric oxide synthase and mitochondrial KATP channel activation in the in vivo anesthetized rabbit heart model. Vascul. Pharmacol. 2007, 47, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Adam, M.; Meyer, S.; Knors, H.; Klinke, A.; Radunski, U.K.; Rudolph, T.K.; Rudolph, V.; Spin, J.M.; Tsao, P.S.; Costard-Jäckle, A.; et al. Levosimendan displays anti-inflammatory effects and decreases MPO bioavailability in patients with severe heart failure. Sci. Rep. 2015, 5, 9704. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Antila, S.; Sundberg, S.; Lehtonen, L.A. Clinical pharmacology of levosimendan. Clin. Pharmacokinet. 2007, 46, 535–552. [Google Scholar] [CrossRef] [PubMed]
- Cholley, B.; Levy, B.; Fellahi, J.L.; Longrois, D.; Amour, J.; Ouattara, A.; Mebazaa, A. Levosimendan in the light of the results of the recent randomized controlled trials: An expert opinion paper. Crit. Care 2019, 23, 385. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bourgoin, P.; Lecomte, J.; Oualha, M.; Berthomieu, L.; Pereira, T.; Davril, E.; Lamoureux, F.; Joram, N.; Chenouard, A.; Duflot, T. Population Pharmacokinetics of Levosimendan and its Metabolites in Critically Ill Neonates and Children Supported or Not by Extracorporeal Membrane Oxygenation. Clin. Pharmacokinet. 2023, 62, 335–348, Erratum in Clin. Pharmacokinet. 2023, 62, 349. https://doi.org/10.1007/s40262-023-01218-6. [Google Scholar] [CrossRef] [PubMed]
- Ezad, S.M.; Ryan, M.; Donker, D.W.; Pappalardo, F.; Barrett, N.; Camporota, L.; Price, S.; Kapur, N.K.; Perera, D. Unloading the Left Ventricle in Venoarterial ECMO: In Whom, When, and How? Circulation 2023, 147, 1237–1250. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Otake, M.; Morita, H.; Sato, K.; Saku, K. Impact of Venoarterial Extracorporeal Membrane Oxygenation on Hemodynamics and Cardiac Mechanics: Insights From Pressure-Volume Loop Analysis. Int. J. Heart Fail. 2025, 7, 125–138. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Todaka, K.; Wang, J.; Yi, G.H.; Stennett, R.; Knecht, M.; Packer, M.; Burkhoff, D. Effects of levosimendan on myocardial contractility and oxygen consumption. J. Pharmacol. Exp. Ther. 1996, 279, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Michaels, A.D.; McKeown, B.; Kostal, M.; Vakharia, K.T.; Jordan, M.V.; Gerber, I.L.; Foster, E.; Chatterjee, K. Effects of intravenous levosimendan on human coronary vasomotor regulation, left ventricular wall stress, and myocardial oxygen uptake. Circulation 2005, 111, 1504–1509. [Google Scholar] [CrossRef] [PubMed]
- Ikonomidis, I.; Parissis, J.T.; Paraskevaidis, I.; Kourea, K.; Bistola, V.; Lekakis, J.; Filippatos, G.; Kremastinos, D.T. Effects of levosimendan on coronary artery flow and cardiac performance in patients with advanced heart failure. Eur. J. Heart Fail. 2007, 9, 1172–1177. [Google Scholar] [CrossRef] [PubMed]
- Papp, Z.; Édes, I.; Fruhwald, S.; De Hert, S.G.; Salmenperä, M.; Leppikangas, H.; Mebazaa, A.; Landoni, G.; Grossini, E.; Caimmi, P.; et al. Levosimendan: Molecular mechanisms and clinical implications: Consensus of experts on the mechanisms of action of levosimendan. Int. J. Cardiol. 2012, 159, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Rieg, A.D.; Rossaint, R.; Verjans, E.; Maihöfer, N.A.; Uhlig, S.; Martin, C. Levosimendan Relaxes Pulmonary Arteries and Veins in Precision-Cut Lung Slices—The Role of KATP-Channels, cAMP and cGMP. PLoS ONE 2013, 8, e66195. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, Y.; Wei, Z.; Zhang, C.; Lu, C.; Zeng, Z. The effect of levosimendan on right ventricular function in patients with heart dysfunction: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 24097. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shi, F.; Bao, H.; Meng, F.; Pang, Y. Levosimendan alleviates myocardial ischemia-reperfusion injury by regulating mitochondrial autophagy through cGAS-STING signaling pathway. J. Clin. Biochem. Nutr. 2025, 77, 74–78. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aminzadeh, A.; Mehrzadi, S. Cardioprotective effect of levosimendan against homocysteine-induced mitochondrial stress and apoptotic cell death in H9C2. Biochem. Biophys. Res. Commun. 2018, 507, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Volleman, C.; Dubelaar, D.P.C.; Vlaar, A.P.J.; van den Brom, C.E. Exploring the Impact of Extracorporeal Membrane Oxygenation on the Endothelium: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 10680. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yao, Y.; Kang, H.; Cheng, Y.; Su, X.; Wang, B. Inflammatory Progression in Patients Undergoing Extracorporeal Membrane Oxygenation. Curr. Mol. Med. 2024, 24, 844–855. [Google Scholar] [CrossRef] [PubMed]
- Girardis, M.; Bettex, D.; Bojan, M.; Demponeras, C.; Fruhwald, S.; Gál, J.; Groesdonk, H.V.; Guarracino, F.; Guerrero-Orriach, J.L.; Heringlake, M.; et al. Levosimendan in intensive care and emergency medicine: Literature update and expert recommendations for optimal efficacy and safety. J. Anesth. Analg. Crit. Care 2022, 2, 4. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sangalli, F.; Avalli, L.; Laratta, M.; Formica, F.; Maggioni, E.; Caruso, R.; Cristina Costa, M.; Guazzi, M.; Fumagalli, R. Effects of Levosimendan on Endothelial Function and Hemodynamics During Weaning From Veno-Arterial Extracorporeal Life Support. J. Cardiothorac. Vasc. Anesth. 2016, 30, 1449–1453. [Google Scholar] [CrossRef] [PubMed]
- Vally, S.; Ferdynus, C.; Persichini, R.; Bouchet, B.; Braunberger, E.; Lo Pinto, H.; Martinet, O.; Vandroux, D.; Aujoulat, T.; Allyn, J.; et al. Impact of levosimendan on weaning from peripheral venoarterial extracorporeal membrane oxygenation in intensive care unit. Ann. Intensive Care 2019, 9, 24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, Y.W.; Lee, W.C.; Wu, P.J.; Fang, H.Y.; Fang, Y.N.; Chen, H.C.; Tong, M.S.; Sung, P.H.; Lee, C.H.; Chung, W.J. Early Levosimendan Administration Improved Weaning Success Rate in Extracorporeal Membrane Oxygenation in Patients With Cardiogenic Shock. Front. Cardiovasc. Med. 2022, 9, 912321. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Distelmaier, K.; Roth, C.; Schrutka, L.; Binder, C.; Steinlechner, B.; Heinz, G.; Lang, I.M.; Maurer, G.; Koinig, H.; Niessner, A.; et al. Beneficial effects of levosimendan on survival in patients undergoing extracorporeal membrane oxygenation after cardiovascular surgery. Br. J. Anaesth. 2016, 117, 52–58. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gaisendrees, C.; Schlachtenberger, G.; Gerfer, S.; Krasivskyi, I.; Djordjevic, I.; Sabashnikov, A.; Kosmopoulos, M.; Jaeger, D.; Luehr, M.; Kuhn, E.; et al. The impact of levosimendan on survival and weaning from ECMO after extracorporeal cardiopulmonary resuscitation. Artif. Organs. 2023, 47, 1351–1360. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.M.; Zhao, G.M.; Zhang, H.; Chen, W.; Zhou, J.X.; Li, H.L. Clinical outcomes of levosimendan administration in veno-arterial extracorporeal membrane oxygenation: A meta-analysis. BMJ Open. 2025, 15, e101995. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guilherme, E.; Jacquet-Lagrèze, M.; Pozzi, M.; Achana, F.; Armoiry, X.; Fellahi, J.L. Can levosimendan reduce ECMO weaning failure in cardiogenic shock?: A cohort study with propensity score analysis. Crit Care 2020, 24, 442, Erratum in Crit Care 2020, 24, 487. https://doi.org/10.1186/s13054-020-03213-w. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Burgos, L.M.; Seoane, L.; Furmento, J.F.; Costabel, J.P.; Diez, M.; Vrancic, M.; Aissaoui, N.; Benzadón, M.N.; Navia, D. Effects of levosimendan on weaning and survival in adult cardiogenic shock patients with veno-arterial extracorporeal membrane oxygenation: Systematic review and meta-analysis. Perfusion 2020, 35, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Zhao, T.; Guo, B.; Li, Y. Short-term effects of levosimendan use for venoarterial extracorporeal membrane oxygenation: A systematic review and meta-analysis. Perfusion 2023, 38, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, L.; Yao, Y.; Li, Y.; Qin, W.; Li, Y.; Xue, W.; Li, P.; Chen, Y.; Chen, X.; et al. Effects of levosimendan on the outcome of veno-arterial extracorporeal membrane oxygenation: A systematic review and meta-analysis. Clin. Res. Cardiol. 2024, 113, 509–521. [Google Scholar] [CrossRef] [PubMed]
- Ng, T.M. Levosimendan, a new calcium-sensitizing inotrope for heart failure. Pharmacotherapy 2004, 24, 1366–1384. [Google Scholar] [CrossRef] [PubMed]
- Friedrichson, B.; Jasny, T.; Nordine, M.; Old, O.; Zacharowski, K.; Kloka, J. 171: Protective effects of Levosimendan in postcardiotomy V-A ECMO patients. Results of 6,456 ECMO runs. ASAIO J. 2023, 69 (Suppl. 3), 17. [Google Scholar] [CrossRef]
- Braun, J.P.; Jasulaitis, D.; Moshirzadeh, M.; Doepfmer, U.R.; Kastrup, M.; von Heymann, C.; Dohmen, P.M.; Konertz, W.; Spies, C. Levosimendan may improve survival in patients requiring mechanical assist devices for post-cardiotomy heart failure. Crit. Care 2006, 10, R17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Massol, J.; Simon-Tillaux, N.; Tohme, J.; Hariri, G.; Dureau, P.; Duceau, B.; Belin, L.; Hajage, D.; De Rycke, Y.; Charfeddine, A.; et al. Levosimendan in patients undergoing extracorporeal membrane oxygenation after cardiac surgery: An emulated target trial using observational data. Crit. Care 2023, 27, 51. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hau, M.; Fong, K.M.; Au, S.Y. Levosimendan’s effect on venoarterial extracorporeal membrane oxygenation weaning. Int. J. Artif. Organs 2022, 45, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Paulo, N.; Kimmoun, A.; Hajage, D.; Hubert, P.; Levy, D.; Pineton de Chambrun, M.; Chommeloux, J.; Saura, O.; Del Marmol, G.; Moyon, Q.; et al. Does Levosimendan hasten veno-arterial ECMO weaning? A propensity score matching analysis. Ann. Intensive Care. 2025, 15, 48. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mehta, R.H.; Leimberger, J.D.; van Diepen, S.; Meza, J.; Wang, A.; Jankowich, R.; Harrison, R.W.; Hay, D.; Fremes, S.; Duncan, A.; et al. Levosimendan in Patients with Left Ventricular Dysfunction Undergoing Cardiac Surgery. N. Engl. J. Med. 2017, 376, 2032–2042. [Google Scholar] [CrossRef] [PubMed]
- Landoni, G.; Lomivorotov, V.V.; Alvaro, G.; Lobreglio, R.; Pisano, A.; Guarracino, F.; Calabrò, M.G.; Grigoryev, E.V.; Likhvantsev, V.V.; Salgado-Filho, M.F.; et al. Levosimendan for Hemodynamic Support after Cardiac Surgery. N. Engl. J. Med. 2017, 376, 2021–2031. [Google Scholar] [CrossRef] [PubMed]
- Gordon, A.C.; Perkins, G.D.; Singer, M.; McAuley, D.F.; Orme, R.M.; Santhakumaran, S.; Mason, A.J.; Cross, M.; Al-Beidh, F.; Best-Lane, J.; et al. Levosimendan for the Prevention of Acute Organ Dysfunction in Sepsis. N. Engl. J. Med. 2016, 375, 1638–1648. [Google Scholar] [CrossRef] [PubMed]
- Affronti, A.; di Bella, I.; Carino, D.; Ragni, T. Levosimendan may improve weaning outcomes in venoarterial ECMO patients. ASAIO J. 2013, 59, 554–557. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.S.; Kooda, K.; Igneri, L.A. A Narrative Review of the Impact of Extracorporeal Membrane Oxygenation on the Pharmacokinetics and Pharmacodynamics of Critical Care Therapies. Ann. Pharmacother. 2023, 57, 706–726. [Google Scholar] [CrossRef] [PubMed]
- Bertin, S.; Haefliger, D.; Perez, M.H.; Guidi, M.; Decosterd, L.A.; Chanez, V.; Di Paolo, E.R.; Buclin, T.; Livio, F. Pharmacokinetics of levosimendan in critically Ill children on extracorporeal membrane oxygenation: A prospective observational study. Front Pediatr. 2025, 13, 1542417. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dzierba, A.L.; Abrams, D.; Brodie, D. Medicating patients during extracorporeal membrane oxygenation: The evidence is building. Crit. Care 2017, 21, 66. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fresiello, L.; Hermens, J.A.J.; Pladet, L.; Meuwese, C.L.; Donker, D.W. The physiology of venoarterial extracorporeal membrane oxygenation—A comprehensive clinical perspective. Perfusion 2024, 39, 5S–12S. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hussey, P.T.; von Mering, G.; Nanda, N.C.; Ahmed, M.I.; Addis, D.R. Echocardiography for extracorporeal membrane oxygenation. Echocardiography 2022, 39, 339–370. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Levy, D.; Schmidt, M.; Hekimian, G.; Combes, A.; Saura, O. Clinical validation of pulmonary artery catheter use for continuous thermodilution cardiac output monitoring in VA-ECMO patients. Intensive Care Med. 2025, 51, 785–787. [Google Scholar] [CrossRef] [PubMed]
- Chirinos, J.A. Ventricular-arterial coupling: Invasive and non-invasive assessment. Artery Res. 2013, 7, 2–14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Herpain, A.; Bouchez, S.; Girardis, M.; Guarracino, F.; Knotzer, J.; Levy, B.; Liebregts, T.; Pollesello, P.; Ricksten, S.E.; Riha, H.; et al. Use of Levosimendan in Intensive Care Unit Settings: An Opinion Paper. J. Cardiovasc. Pharmacol. 2019, 73, 3–14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nieminen, M.S.; Akkila, J.; Hasenfuss, G.; Kleber, F.X.; Lehtonen, L.A.; Mitrovic, V.; Nyquist, O.; Remme, W.J. Hemodynamic and neurohumoral effects of continuous infusion of levosimendan in patients with congestive heart failure. J. Am. Coll. Cardiol. 2000, 36, 1903–1912. [Google Scholar] [CrossRef] [PubMed]
- Susilo, H.; Aldian, F.M.; Wungu, C.D.K.; Alsagaff, M.Y.; Sutanto, H.; Multazam, C.E.C.Z. Levosimendan, a Promising Pharmacotherapy in Cardiogenic Shock: A Comprehensive Review. Eur. Cardiol. 2024, 19, e21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kasikcioglu, H.A.; Cam, N. A review of levosimendan in the treatment of heart failure. Vasc Health Risk Manag. 2006, 2, 389–400. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gagliardi, V.; Ceccherelli, F.; Lovato, A.; Gagliardi, G. The Effects of Levosimendan on Microcirculation and Peripheral Perfusion in Septic Shock: A Pilot Study. Life 2025, 15, 871. [Google Scholar] [CrossRef] [PubMed]
- Brunner, S.N.; Bogert, N.V.; Schnitzbauer, A.A.; Juengel, E.; Moritz, A.; Werner, I.; Kornberger, A.; Beiras-Fernandez, A. Levosimendan protects human hepatocytes from ischemia-reperfusion injury. PLoS ONE 2017, 12, e0187839. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, L.; Tian, L.; Wang, S.; Yang, W.; Lu, X.; Zhu, C. Levosimendan in rats decreases acute kidney injury after cardiopulmonary resuscitation by improving mitochondrial dysfunction. Transl. Androl. Urol. 2021, 10, 3010–3020. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tian, L.; Wang, S.; Zhao, L.; Lu, X.; Zhu, C.; Gong, H.; Yang, W. Renoprotective effects of levosimendan on acute kidney injury following cardiac arrest via anti-inflammation, anti-apoptosis, and ERK activation. FEBS Open Bio. 2021, 11, 2236–2244. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Govender, K.; Cabrales, P. Extracorporeal circulation impairs microcirculation perfusion and organ function. J. Appl. Physiol. (1985) 2022, 132, 794–810. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Volleman, C.; Raasveld, S.J.; Jamaludin, F.S.; Vlaar, A.P.J.; van den Brom, C.E. Microcirculatory Perfusion Disturbances During Veno-Arterial Extracorporeal Membrane Oxygenation: A Systematic Review. Microcirculation 2024, 31, e12891. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Xiong, F.; Hou, Y.; Yu, X.; Pan, P. Levosimendan for sepsis-induced myocardial dysfunction: Friend or foe? Front. Cardiovasc. Med. 2025, 11, 1520596. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Turkiewicz, K.; Rola, P.; Kulczycki, J.J.; Włodarczak, S.; Jastrzębski, A.; Pęcherzewski, M.; Furtan, Ł.; Barycki, M.; Doroszko, A.; Włodarczak, A.; et al. High-risk PCI facilitated by levosimendan infusion and Impella CP support in ACS cohort-pilot study. Kardiol. Pol. 2024, 82, 771–773. [Google Scholar] [CrossRef] [PubMed]
- Nieminen, M.S.; Fruhwald, S.; Heunks, L.M.; Suominen, P.K.; Gordon, A.C.; Kivikko, M.; Pollesello, P. Levosimendan: Current data, clinical use and future development. Heart Lung Vessel. 2013, 5, 227–245. [Google Scholar] [PubMed] [PubMed Central]
- Papp, Z.; Agostoni, P.; Alvarez, J.; Bettex, D.; Bouchez, S.; Brito, D.; Černý, V.; Comin-Colet, J.; Crespo-Leiro, M.G.; Delgado, J.F.; et al. Levosimendan Efficacy and Safety: 20 years of SIMDAX in Clinical Use. Card. Fail. Rev. 2020, 6, e19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bunge, J.J.H.; Mariani, S.; Meuwese, C.; van Bussel, B.C.T.; Di Mauro, M.; Wiedeman, D.; Saeed, D.; Pozzi, M.; Loforte, A.; Boeken, U.; et al. Characteristics and Outcomes of Prolonged Venoarterial Extracorporeal Membrane Oxygenation After Cardiac Surgery: The Post-Cardiotomy Extracorporeal Life Support (PELS-1) Cohort Study. Crit. Care Med. 2024, 52, e490–e502. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tholén, M.; Ricksten, S.E.; Lannemyr, L. Effects of levosimendan on renal blood flow and glomerular filtration in patients with acute kidney injury after cardiac surgery: A double blind, randomized placebo-controlled study. Crit. Care 2021, 25, 207. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, H.; Jiang, L.; Fu, R.; Qin, P.; Zhang, X.; Tian, T.; Feng, G.X.; Yang, Y.M. Impact of levosimendan on efficacy and renal function in acute heart failure according to renal function: A perspective, multi-center, real-world registry. Front. Cardiovasc. Med. 2022, 9, 986039. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grossini, E.; Bellofatto, K.; Farruggio, S.; Sigaudo, L.; Marotta, P.; Raina, G.; De Giuli, V.; Mary, D.; Pollesello, P.; Minisini, R.; et al. Levosimendan inhibits peroxidation in hepatocytes by modulating apoptosis/autophagy interplay. PLoS ONE 2015, 10, e0124742. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Farmakis, D.; Alvarez, J.; Gal, T.B.; Brito, D.; Fedele, F.; Fonseca, C.; Gordon, A.C.; Gotsman, I.; Grossini, E.; Guarracino, F.; et al. Levosimendan beyond inotropy and acute heart failure: Evidence of pleiotropic effects on the heart and other organs: An expert panel position paper. Int. J. Cardiol. 2016, 222, 303–312. [Google Scholar] [CrossRef] [PubMed]


| Study/Year | Design and Population | Main Outcomes | Clinical Interpretation |
|---|---|---|---|
| Kaddoura et al., 2021 (J. Cardiothorac. Vasc. Anesth.) [17] | Meta-analysis (7 studies, mixed V-A ECMO cohorts) (n = 630) | Improved weaning and survival without increase in adverse events | Hypothesis-generating research |
| Sangalli et al., 2016 (J. Heart Lung Transplant.) [37] | Prospective observational trial; Cardiogenic shock V-A ECMO (n = 10) | Levosimendan was associated with improved endothelial function, increased mixed venous oxygen saturation, reduced ECMO blood flow requirements and decreased arterial lactate | Support use of Levosimendan to improve endothelial function and hemodynamics and facilitate weaning from ECMO |
| Vally et al., 2019 (Ann. Intensive Care) [38] | Retrospective cohort; peripheral V-A ECMO in ICU (n = 150) | Higher ECMO weaning rate 70.9%); trend toward lower mortality | Favorable hemodynamic signal; not statistically conclusive |
| Chen et al., 2022 (Front. Cardiovasc. Med.) [39] | Single-center cohort study; early Levosimendan during ECMO for cardiogenic shock. (n = 46 Levosimendan group, 113 no Levosimendan group) | Improved ECMO weaning (82.6% vs. 48.7%), 30-day (68.1% vs. 43.5%) and 180-day survival (75.3% vs. 43.2%) in Levosimendan group | Early administration may enhance success rate of V-A ECMO weaning and decrease mortality |
| Distelmaier et al., 2016 (Br. J. Anesth.) [40] | Observational single-center retrospective study; Post cardiotomy ECMO patients (n = 240) | Association between Levosimendan treatment and successful ECMO weaning, 30-day and long-term mortality | Evidence of myocardial recovery facilitation and improved survival |
| Gaisendrees et al., 2023 (Artif. Organs) [41] | Observational retrospective study; eCPR patients after cardiac arrest on ECMO | Higher weaning (88% vs. 20%) and survival rates (72% vs. 12%) in Levosimendan group | Suggest benefit due to short to mid-term increase in inotropy |
| Zhao et al., 2025 (BMJ Open) [42] | Meta-analysis (16 studies, n = 2083) | Increase weaning success, decrease 30-day and in-hospital mortality; longer ECMO and ICU stay | Largest synthesis to date; confirms significant association but stresses need for high-quality RCTs |
| Guilherme et al., 2020 (Crit. Care) [43] | Observational single-center cohort study (n = 200) | No significant differences in ECMO duration, weaning failure, 28-day and 6 months mortality | Levosimendan do not improve the rate of successful ECMO weaning |
| Burgos et al., 2020 (Perfusion) [44] | Meta-analysis (5 non-randomized trials) (n = 557) | Higher ECMO weaning success (61.4%) and lower short-term mortality (36%) | First pooled evidence suggesting benefit; limited by small sample size and observational data |
| Yang et al., 2021 (Perfusion) [45] | Meta-analysis (9 observational studies) (n = 1058) | Higher weaning and reduced 28-day mortality rate in Levosimendan group | Supports potential clinical utility in weaning success rate and helped lower mortality |
| Liu et al., 2024 (Clin. Res. Cardiol.) [46] | Meta-analysis (15 studies) (n = 1772) | Higher probability of weaning (79.3% vs. 63.4%) and reduced in-hospital mortality (46.3% vs. 50.7%) in Levosimendan group | Positive trend; evidence still based on non-randomized studies |
| Friedrichson et al., 2018 (J. Cardiothorac. Vasc. Anesth.) [48] | Retrospective study; ECMO post-cardiotomy (n = 6456) | Levosimendan associated with reduced in-hospital mortality (69.6% vs. 77.8%) | Mortality rates in both groups exceed those reported in previous studies |
| Massol et al., 2023 (Crit. Care) [50] | Emulated target trial; post-cardiotomy shock on ECMO (n = 239) | No difference in weaning success or survival in cohorts | Well-designed negative study; challenges previous optimistic data |
| Hau et al., 2022 (Int. J. Artif. Organs) [51] | Retrospective study (n = 119) | No statistically significant effect on weaning or mortality | Neutral study; underscores center variability and confounding |
| Paulo et al., 2025 (Ann. Intensive Care) [52] | Retrospective bicentric study; V-A ECMO cardiogenic shock patients (n = 320) | No effect on ECMO weaning, 30-day or 6-month survival. Increased LVEF and aortic VTI after Levosimendan | Neutral; highlights the need for randomized evidence. |
| Affronti et al., 2013, Int. Cardiovasc. Thorac. Surg.) [56] | Retrospective study; Cardiogenic shock ECMO (n = 6) | Levosimendan group associated with higher ECMO weaning rate (83.33% vs. 27.3%), survival rate (66.66% vs. 36.4%) and reduced catecholamine requirement (50% vs. 100%) | Suggests inodilator benefit in post-cardiotomy low-output syndrome |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torre, D.E.; Pirri, C. Levosimendan in ECMO: A Paradigm Shift or an Adjunctive Option? Future Pharmacol. 2025, 5, 70. https://doi.org/10.3390/futurepharmacol5040070
Torre DE, Pirri C. Levosimendan in ECMO: A Paradigm Shift or an Adjunctive Option? Future Pharmacology. 2025; 5(4):70. https://doi.org/10.3390/futurepharmacol5040070
Chicago/Turabian StyleTorre, Debora Emanuela, and Carmelo Pirri. 2025. "Levosimendan in ECMO: A Paradigm Shift or an Adjunctive Option?" Future Pharmacology 5, no. 4: 70. https://doi.org/10.3390/futurepharmacol5040070
APA StyleTorre, D. E., & Pirri, C. (2025). Levosimendan in ECMO: A Paradigm Shift or an Adjunctive Option? Future Pharmacology, 5(4), 70. https://doi.org/10.3390/futurepharmacol5040070
