The Fate of Biodegradable Plastic Items Under Conditions of State-of-the-Art Composting
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Composting
2.3. Abiotic Decomposition
2.4. Fragment Recovery
2.5. Analytics
3. Results and Discussion
3.1. Physico-Chemical Characterization of Disposable Bags and Glasses
3.2. Degradation of Disposable Bags and Glasses Under Composting Conditions
3.3. Degradation of Disposable Bags and Glasses Under Abiotic Conditions
3.4. Development of the Material Characteristics of the Disposable Bags During Degradation
3.5. Degradation Behavior of the Disposable Glasses (PLA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sun, Q.; Li, J.; Wang, C.; Chen, A.; You, Y.; Yang, S.; Liu, H.; Jiang, G.; Wu, Y.; Li, Y. Research Progress on Distribution, Sources, Identification, Toxicity, and Biodegradation of Microplastics in the Ocean, Freshwater, and Soil Environment. Front. Environ. Sci. Eng. 2022, 16, 1. [Google Scholar] [CrossRef]
- Lozano, Y.M.; Lehnert, T.; Linck, L.T.; Lehmann, A.; Rillig, M.C. Microplastic Shape, Polymer Type, and Concentration Affect Soil Properties and Plant Biomass. Front. Plant Sci. 2021, 12, 616645. [Google Scholar] [CrossRef] [PubMed]
- Chia, R.W.; Lee, J.-Y.; Jang, J.; Kim, H.; Kwon, K.D. Soil Health and Microplastics: A Review of the Impacts of Microplastic Contamination on Soil Properties. J. Soils Sediments 2022, 22, 2690–2705. [Google Scholar] [CrossRef]
- Godoy, V.; Blázquez, G.; Calero, M.; Quesada, L.; Martín-Lara, M.A. The Potential of Microplastics as Carriers of Metals. Environ. Pollut. 2019, 255, 113363. [Google Scholar] [CrossRef] [PubMed]
- Vithanage, M.; Ramanayaka, S.; Hasinthara, S.; Navaratne, A. Compost as a Carrier for Microplastics and Plastic-Bound Toxic Metals into Agroecosystems. Curr. Opin. Environ. Sci. Health 2021, 24, 100297. [Google Scholar] [CrossRef]
- Sheng, Y.; Ye, X.; Zhou, Y.; Li, R. Microplastics (MPs) Act as Sources and Vector of Pollutants-Impact Hazards and Preventive Measures. Bull. Environ. Contam. Toxicol. 2021, 107, 722–729. [Google Scholar] [CrossRef] [PubMed]
- Cocca, M.; Pace, E.; Maria, E.; Gentile, G.; Montarsolo, A.; Mossotti, R. Proceedings of the International Conference on Microplastic Pollution in the Mediterranean Sea; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Rochman, C.M.; Brookson, C.; Bikker, J.; Djuric, N.; Earn, A.; Bucci, K.; Athey, S.; Huntington, A.; McIlwraith, H.; Munno, K.; et al. Rethinking Microplastics as a Diverse Contaminant Suite. Environ. Toxicol. Chem. 2019, 38, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.-F.; Bohlén, M.; Lindblad, C.; Hedenqvist, M.; Hakonen, A. Microplastics Generated from a Biodegradable Plastic in Freshwater and Seawater. Water Res. 2021, 198, 117123. [Google Scholar] [CrossRef] [PubMed]
- Steiner, T.; Zhang, Y.; Möller, J.N.; Agarwal, S.; Löder, M.G.J.; Greiner, A.; Laforsch, C.; Freitag, R. Municipal Biowaste Treatment Plants Contribute to the Contamination of the Environment with Residues of Biodegradable Plastics with Putative Higher Persistence Potential. Sci. Rep. 2022, 12, 9021. [Google Scholar] [CrossRef] [PubMed]
- Rauscher, A.; Meyer, N.; Jakobs, A.; Bartnick, R.; Lueders, T.; Lehndorff, E. Biodegradable Microplastic Increases CO2 Emission and Alters Microbial Biomass and Bacterial Community Composition in Different Soil Types. Appl. Soil Ecol. 2023, 182, 104714. [Google Scholar] [CrossRef]
- Steiner, T.; Möller, J.N.; Löder, M.G.J.; Hilbrig, F.; Laforsch, C.; Freitag, R. Microplastic Contamination of Composts and Liquid Fertilizers from Municipal Biowaste Treatment Plants: Effects of the Operating Conditions. Waste Biomass Valor. 2023, 14, 873–887. [Google Scholar] [CrossRef]
- Bagheri, A.R.; Laforsch, C.; Greiner, A.; Agarwal, S. Fate of So-Called Biodegradable Polymers in Seawater and Freshwater. Glob. Chall. 2017, 1, 1700048. [Google Scholar] [CrossRef] [PubMed]
- DIN EN 13432:2000-12; Verpackung—Anforderungen an Die Verwertung Von Verpackungen Durch Kompostierung Und Biologischen Abbau—Prüfschema Und Bewertungskriterien Für Die Einstufung Von Verpackungen; Deutsche Fassung EN 13432:2000. Deutsches Institut für Normung: Berlin, Germany, 2000. [CrossRef]
- DIN EN 14045:2003-06; Verpackung—Bewertung Der Desintegration Von Verpackungsmaterialien in Praxisorientierten Prüfungen Unter Definierten Kompostierungsbedingungen; Deutsche Fassung EN 14045:2003. Deutsches Institut fur Normung: Berlin, Germany, 2003. [CrossRef]
- Kehres, B.; Mähl, B.; Clemens, J.; Cuhls, C.; Reinhold, J.; Müsken, J. Betrieb Von Kompostierungsanlagen—Mit Geringen Emissionen Klimarelevanter Gase; Bundesgütegemeinschaft Kompost e.V.: Köln, Germany, 2010. [Google Scholar]
- Rynk, R.; van de Kamp, M.; Willson, G.B.; Singley, M.E.; Richard, T.L.; Kolega, J.J.; Gouin, F.R.; Laliberty, L.; Kay, D.; Murphy, D.; et al. On-Farm Composting Handbook (NRAES 54); Northeast Regional Agricultural Engineering Service: Ithaca, NY, USA, 1992. [Google Scholar]
- Koch, K.; Plabst, M.; Schmidt, A.; Helmreich, B.; Drewes, J.E. Co-Digestion of Food Waste in a Municipal Wastewater Treatment Plant: Comparison of Batch Tests and Full-Scale Experiences. Waste Manag. 2016, 47, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hu, F.; Bowman, D.; Shi, W. Nitrous Oxide Production in Turfgrass Systems: Effects of Soil Properties and Grass Clipping Recycling. Appl. Soil Ecol. 2013, 67, 61–69. [Google Scholar] [CrossRef]
- DIN ISO 3310-1:2017-11; Test Sieves Technical Requirements and Testing Part 1: Test Sieves of Metal Wire Cloth (ISO_3310-1:2016). DIN Deutsches Institut für Normung: Berlin, Germany, 2017. [CrossRef]
- Mihai, M.; Huneault, M.A.; Favis, B.D.; Li, H. Extrusion Foaming of Semi-Crystalline PLA and PLA/Thermoplastic Starch Blends. Macromol. Biosci. 2007, 7, 907–920. [Google Scholar] [CrossRef] [PubMed]
- La Fuente, C.I.A.; Maniglia, B.C.; Tadini, C.C. Biodegradable Polymers: A Review about Biodegradation and Its Implications and Applications. Packag. Technol. Sci. 2023, 36, 81–95. [Google Scholar] [CrossRef]
- Kalita, N.K.; Nagar, M.K.; Mudenur, C.; Kalamdhad, A.; Katiyar, V. Biodegradation of Modified Poly (Lactic Acid) Based Biocomposite Films under Thermophilic Composting Conditions. Polym. Test. 2019, 76, 522–536. [Google Scholar] [CrossRef]
- Mouhoubi, R.; Lasschuijt, M.; Ramon Carrasco, S.; Gojzewski, H.; Wurm, F.R. End-of-Life Biodegradation? How to Assess the Composting of Polyesters in the Lab and the Field. Waste Manag. 2022, 154, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Rudnik, E. Compostable Polymer Materials, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Han, X.; Pan, J. A Model for Simultaneous Crystallisation and Biodegradation of Biodegradable Polymers. Biomaterials 2009, 30, 423–430. [Google Scholar] [CrossRef] [PubMed]
Bag 1 | Bag 2 | Bag 3 | |
---|---|---|---|
Original | 22% | 14% | 27% |
Abiotic decomposition (21 days) | 32% | 19% | 33% |
Abiotic decomposition (44 days) | 41% | 23% | 40% |
Composting (28 days) | 46% | 39% | 32% |
Composting (48 days) | - | 42% | 46% |
Relative PLA-Content | Relative PBAT-Content | |
---|---|---|
Original Bag 1 | 0.22 | 0.78 |
Abiotic decomposition (21 days) | 0.19 | 0.81 |
Abiotic decomposition (44 days) | 0.19 | 0.81 |
Composting (28 days) | 0.23 | 0.77 |
Composting (48 days) | 0.24 | 0.76 |
Original Bag 2 | 0.15 | 0.85 |
Abiotic decomposition (21 days) | 0.12 | 0.88 |
Abiotic decomposition (44 days) | 0.11 | 0.89 |
Composting (28 days) | 0.23 | 0.77 |
Composting (48 days) | 0.23 | 0.77 |
Original Bag 3 | 0.26 | 0.74 |
Abiotic decomposition (21 days) | 0.0 | 1.0 |
Abiotic decomposition (44 days) | 0.0 | 1.0 |
Composting (28 days) | 0.23 | 0.77 |
Composting (48 days) | 0.24 | 0.76 |
Crystallinity | Cup * | Stem * | Cup ** | Stem ** |
Original Material | amorphous | amorphous | 15% | 15% |
Abiotic decomposition (21 days) | 84% | 83% | ||
Abiotic decomposition (44 days) | 82% | 86% | ||
Composted (28 days) | amorphous | 74% | 26% | 73% |
Composted (48 days) | 81% | 75% | 64% | 67% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leitner, L.-C.; Steiner, T.; Greiner, A.; Freitag, R. The Fate of Biodegradable Plastic Items Under Conditions of State-of-the-Art Composting. Microplastics 2025, 4, 59. https://doi.org/10.3390/microplastics4030059
Leitner L-C, Steiner T, Greiner A, Freitag R. The Fate of Biodegradable Plastic Items Under Conditions of State-of-the-Art Composting. Microplastics. 2025; 4(3):59. https://doi.org/10.3390/microplastics4030059
Chicago/Turabian StyleLeitner, Lisa-Cathrin, Thomas Steiner, Andreas Greiner, and Ruth Freitag. 2025. "The Fate of Biodegradable Plastic Items Under Conditions of State-of-the-Art Composting" Microplastics 4, no. 3: 59. https://doi.org/10.3390/microplastics4030059
APA StyleLeitner, L.-C., Steiner, T., Greiner, A., & Freitag, R. (2025). The Fate of Biodegradable Plastic Items Under Conditions of State-of-the-Art Composting. Microplastics, 4(3), 59. https://doi.org/10.3390/microplastics4030059