Human Exposures to Micro- and Nanoplastics in Water and Data Needed to Understand Potential Health Effects—A-State of the Science Review
Abstract
1. Introduction
- The potential routes of human exposure to MNPs in freshwater and the potential health effects including laboratory-scale studies,
- The pathways MNPs follow to reach freshwater systems,
- The pathways MNPs follow to reach drinking water for the design of preventive measures, and
- The data, which are needed to better understand human exposure and potential health effects.
2. Methodology
- Literature search
- Study selection for data extraction
- Quality assessment
- Data extraction and summary
3. Findings and Discussion
- MNPs in drinking water systems
3.1. MNPs Identification in Samples of Treated Water, House Connections, and Tap Water
3.2. MNPs, from Water Sources to Tap
3.3. DWTPs Efficiency in Removing MPs
3.4. Efficiency of DWTPs in Removing MNPs at Laboratory-Scale
- MNPs in drinking water taps, bottled water, and water-based beverages
Concentration (MPs/L) | ||||||
---|---|---|---|---|---|---|
Author | # Samples | Sample Volume | Mean | Range | Polymer | Polymer ID Method |
[26] | 156 (tap); 3 (b); 12 (be) | 0.55 L (tap); 1 L (be); 1 L (tap-be) | 3.57 ± 1.79 (b); 4.05 (be) | 3.23 ± 3.48–9.24 ± 11.80 (tap); 1.78–5.37 (b); 0–14.3 ± 3.21 (be) | na | na |
[27] | 259 | 0.5–0.6 L; 0.75 L; 2 L | 10.4 (>100 µm); 325 (6.5 to >100 µm) | na | PP > nylon > PS, PE > PEST | ATR-FTIR |
[31] | 32 | 0.25 L | 3074 ± 2531 | 2649 (su); 6292 (g) | PET (su); PE > PP (g) | µ-FTIR |
[28] | 114 (triplicate) | 0.7–1.5 L | 14 ± 14 (su); 118 ± 88 (rp); 50 ± 52 (g); 11 ± 8 (c) | 2–44 (su); 28–241 (rp); 4–156 (g); 5–20 (c) | PEST > PE > PP, PA (su); PEST > PP, PE > PA (rp); PEST, PE > PA > PP (g); PE > PEST > PP (c) | µ-Raman |
[33] | 10 | 1 mL (w); 150 mL (be) | na | na | PVPP (filter stabilizer) | µ-Raman |
[30] | 65 (su); 30 (g) | 2.4–6.0 L (su); 3.3 L (g) | 140 ± 19 (su); 52 ± 4 (g) | na | PET > PE > PP >> PA > PVC | ATR-FTIR and confocal Raman |
[32] | 57 | 1 L | na | 1 ± 1–6 ± 2 (tea); ND to 7 ± 3.2 (Sd & Ed); ND to 28 ± 5.3 (be) | PA > PEA (all); ABS (Ed); PET (be) | µ-Raman |
[6] | 4 | 18.5 L and 19 L | <LOQ to 26 | PE, PS | µ-FTIR | |
4 | 1.5 L | <LOQ | ||||
8 | 0.6 L | 1.6 × 103 (PE); 1.7 × 103 (PA) | PE, PA | |||
12 | 0.5 L | 2 | PET | |||
6 | 0.4 L | <LOQ | ||||
88 | 0.33 L | 0.99 to 4 | ||||
24 | 0.30 L | <LOQ | ||||
46 | 0.20 L | 1.2 (PP); 1.3 (PET) | ||||
[29] | 4 | 0.7–0.75 L | 295 (f&c) | 317 ± 257 | PE >> PS > PVC > PA > PEST | ATR-FTIR and µ-FTIR |
[34] | 8 | 0.18 L | na | 1.31 × 106 to 1.62 × 107 | na | Raman |
[35] | 3 FBs; 4 WBs | na | na | 1.0 × 104 to 1.12 × 105 (FBs); 1.3 × 104 to 3.7 × 104 (WBs) | PPSU (FBs); PC and PP (WBs) | µ-FTIR |
[36] | 3 | na | BCs 1–3: 6.3 × 104; 1.2 × 106; 3.3 × 105 | na | HDPE, PET | EDS |
[37] | 12 (3 per teabag) | 0.01 L | 2.3 × 106 (>1 µm); 1.5 × 1010 (<1 µm) | na | Nylon, PET (releases from empty tea bags) | ATR-FTIR |
- MPs in sources of drinking water
- Rivers and other water streams
3.5. MNPs from Water Sources-to-Sink
3.6. MPs of Anthropogenic Origin and the Influence of Urban Settings on MP Levels
3.7. Other Factors That May Impact the Levels of MNPs in Rivers
- Lakes, ponds, and reservoirs
- Snow and surrounding streams, and groundwater
- Sources and fate of MNPs in water
- Wastewater treatment plants’ effluents and removal levels
- Developing sampling and analytical methods to physically and chemically characterize MNPs
- Potential human health effects/toxicity of MNPs
Topic | Year | Country (n) | References |
---|---|---|---|
Toxicity studies of micro- and nanoplastics and plastic additives on human cells | 2019 | South Korea (1) | [104] |
2020 | China (2), South Korea (1), China-United States (1) | [101,102,103,105] | |
2021 | Germany (2), Spain (3) | [106,107,108,109,110] |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- EPA. Plastics: Material-Specific Data. Available online: https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/plastics-material-specific-data#:~:text=The%20primary%20data%20source%20on%20the%20generation%20of,States%2C%20which%20was%2012.2%20percent%20of%20MSW%20generation (accessed on 20 August 2024).
- Blair, R.M.; Waldron, S.; Gauchotte-Lindsay, C. Average daily flow of microplastics through a tertiary wastewater treatment plant over a ten-month period. Water Res. 2019, 163, 114909. [Google Scholar] [CrossRef]
- Kankanige, D.; Babel, S. Identification of micro-plastics (MPs) in conventional tap water sourced from Thailand. J. Eng. Technol. Sci. 2020, 52, 95–107. [Google Scholar] [CrossRef]
- Shruti, V.C.; Perez-Guevara, F.; Kutralam-Muniasamy, G. Metro station free drinking water fountain—A potential “microplastics hotspot” for human consumption. Environ. Pollut. 2020, 261, 114227. [Google Scholar] [CrossRef]
- Tong, H.; Jiang, Q.; Hu, X.; Zhong, X. Occurrence and identification of microplastics in tap water from China. Chemosphere 2020, 252, 126493. [Google Scholar] [CrossRef]
- Almaiman, L.; Aljomah, A.; Bineid, M.; Aljeldah, F.M.; Aldawsari, F.; Liebmann, B.; Lomako, I.; Sexlinger, K.; Alarfaj, R. The occurrence and dietary intake related to the presence of microplastics in drinking water in Saudi Arabia. Environ. Monit. Assess. 2021, 193, 390. [Google Scholar] [CrossRef] [PubMed]
- Feld, L.; Silva, V.H.d.; Murphy, F.; Hartmann, N.B.; Strand, J. A study of microplastic particles in danish tap water. Water 2021, 13, 2097. [Google Scholar] [CrossRef]
- Weber, F.; Kerpen, J.; Wolff, S.; Langer, R.; Eschweiler, V. Investigation of microplastics contamination in drinking water of a German city. Sci. Total Environ. 2021, 755, 143421. [Google Scholar] [CrossRef]
- Pivokonsky, M.; Cermakova, L.; Novotna, K.; Peer, P.; Cajthaml, T.; Janda, V. Occurrence of microplastics in raw and treated drinking water. Sci. Total Environ. 2018, 643, 1644–1651. [Google Scholar] [CrossRef] [PubMed]
- Mintenig, S.M.; Loder, M.G.J.; Primpke, S.; Gerdts, G. Low numbers of microplastics detected in drinking water from ground water sources. Sci. Total Environ. 2019, 648, 631–635. [Google Scholar] [CrossRef] [PubMed]
- Pivokonsky, M.; Pivokonska, L.; Novotna, K.; Cermakova, L.; Klimtova, M. Occurrence and fate of microplastics at two different drinking water treatment plants within a river catchment. Sci. Total Environ. 2020, 741, 140236. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, J.; Ding, H.; Ding, J.; Jiang, F.; Ding, X.; Sun, C. Distribution characteristics and influencing factors of microplastics in urban tap water and water sources in Qingdao, China. Anal. Lett. 2020, 53, 1312–1327. [Google Scholar] [CrossRef]
- Chanpiwat, P.; Damrongsiri, S. Abundance and characteristics of microplastics in freshwater and treated tap water in Bangkok, Thailand. Environ. Monit. Assess. 2021, 193, 258. [Google Scholar] [CrossRef]
- Kirstein, I.V.; Hensel, F.; Gomiero, A.; Iordachescu, L.; Vianello, A.; Wittgren, H.B.; Vollertsen, J. Drinking plastics?—Quantification and qualification of microplastics in drinking water distribution systems by microFTIR and Py-GCMS. Water Res. 2021, 188, 116519. [Google Scholar] [CrossRef]
- Shen, M.; Zeng, Z.; Wen, X.; Ren, X.; Zeng, G.; Zhang, Y.; Xiao, R. Presence of microplastics in drinking water from freshwater sources: The investigation in Changsha, China. Environ. Sci. Pollut. Res. Int. 2021, 28, 42313–42324. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Zheng, B.; Li, Z.; Cai, C.; Peng, Z.; Zhao, P.; Tian, Y. Occurrence and distribution of microplastics in water supply systems: In water and pipe scales. Sci. Total Environ. 2021, 803, 150004. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.C.; Ball, H.; Cross, R.; Horton, A.A.; Jurgens, M.D.; Read, D.S.; Vollertsen, J.; Svendsen, C. Identification and Quantification of Microplastics in Potable Water and Their Sources within Water Treatment Works in England and Wales. Environ. Sci. Technol. 2020, 54, 12326–12334. [Google Scholar] [CrossRef]
- Dalmau-Soler, J.; Ballesteros-Cano, R.; Boleda, M.R.; Paraira, M.; Ferrer, N.; Lacorte, S. Microplastics from headwaters to tap water: Occurrence and removal in a drinking water treatment plant in Barcelona Metropolitan area (Catalonia, NE Spain). Environ. Sci. Pollut. Res. Int. 2021, 11, 11. [Google Scholar] [CrossRef]
- Gomiero, A.; Oysaed, K.B.; Palmas, L.; Skogerbo, G. Application of GCMS-pyrolysis to estimate the levels of microplastics in a drinking water supply system. J. Hazard. Mater. 2021, 416, 125708. [Google Scholar] [CrossRef] [PubMed]
- Kankanige, D.; Babel, S. Contamination by ≥6.5 μm-sized microplastics and their removability in a conventional water treatment plant (WTP) in Thailand. J. Water Process Eng. 2021, 40, 101765. [Google Scholar] [CrossRef]
- Radityaningrum, A.D.; Trihadiningrum, Y.; Mar’atusholihah; Soedjono, E.S.; Herumurti, W. Microplastic contamination in water supply and the removal efficiencies of the treatment plants: A case of Surabaya City, Indonesia. J. Water Process Eng. 2021, 43, 102195. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, Z.; Liu, J.; Wu, E.; Zheng, Q.; Cui, L. Phase transition of Mg/Al-flocs to Mg/Al-layered double hydroxides during flocculation and polystyrene nanoplastics removal. J. Hazard. Mater. 2021, 406, 124697. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, G.; Yue, J.; Xing, X.; Yang, Z.; Wang, X.; Wang, Q.; Zhang, J. Enhanced removal of polyethylene terephthalate microplastics through polyaluminum chloride coagulation with three typical coagulant aids. Sci. Total Environ. 2021, 800, 149589. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, X.; Gao, W.; Zhang, Y.; He, D. Removal of microplastics from water by magnetic nano-Fe3O4. Sci. Total Environ. 2022, 802, 149838. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Ding, J.; Song, Z.; Yang, B.; Zhang, C.; Guan, B. Degradation of nano-sized polystyrene plastics by ozonation or chlorination in drinking water disinfection processes. Chem. Eng. J. 2022, 427, 131690. [Google Scholar] [CrossRef]
- Kosuth, M.; Mason, S.A.; Wattenberg, E.V. Anthropogenic contamination of tap water, beer, and sea salt. PLoS ONE 2018, 13, e0194970. [Google Scholar] [CrossRef] [PubMed]
- Mason, S.A.; Welch, V.G.; Neratko, J. Synthetic Polymer Contamination in Bottled Water. Front. Chem. 2018, 6, 407. [Google Scholar] [CrossRef]
- Schymanski, D.; Goldbeck, C.; Humpf, H.U.; Furst, P. Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water. Water Res. 2018, 129, 154–162. [Google Scholar] [CrossRef]
- Weisser, J.; Beer, I.; Hufnagl, B.; Hofmann, T.; Lohninger, H.; Ivleva, N.P.; Glas, K. From the well to the bottle: Identifying sources of microplastics in mineral water. Water 2021, 13, 841. [Google Scholar] [CrossRef]
- Kankanige, D.; Babel, S. Smaller-sized micro-plastics (MPs) contamination in single-use PET-bottled water in Thailand. Sci. Total Environ. 2020, 717, 137232. [Google Scholar] [CrossRef] [PubMed]
- Osmann, B.E.; Sarau, G.; Holtmannspotter, H.; Pischetsrieder, M.; Christiansen, S.H.; Dicke, W. Small-sized microplastics and pigmented particles in bottled mineral water. Water Res. 2018, 141, 307–316. [Google Scholar] [CrossRef]
- Shruti, V.C.; Perez-Guevara, F.; Elizalde-Martinez, I.; Kutralam-Muniasamy, G. First study of its kind on the microplastic contamination of soft drinks, cold tea and energy drinks—Future research and environmental considerations. Sci. Total Environ. 2020, 726, 138580. [Google Scholar] [CrossRef]
- Kahle, E.M.; Zarnkow, M.; Jacob, F. Investigation and identification of foreign turbidity particles in beverages via Raman micro-spectroscopy. Eur. Food Res. Technol. 2021, 247, 579–591. [Google Scholar] [CrossRef]
- Li, D.; Yang, L.; Kavanagh, R.; Xiao, L.; Shi, Y.; Kehoe, D.K.; Sheerin, E.D.; Gun’ko, Y.K.; Boland, J.J.; Wang, J.J. Sampling, Identification and Characterization of Microplastics Release from Polypropylene Baby Feeding Bottle during Daily Use. J. Vis. Exp. 2021, 173, 24. [Google Scholar] [CrossRef]
- Song, K.; Ding, R.; Sun, C.; Yao, L.; Zhang, W. Microparticles and microplastics released from daily use of plastic feeding and water bottles and plastic injectors: Potential risks to infants and children in China. Environ. Sci. Pollut. Res. Int. 2021, 19, 19. [Google Scholar] [CrossRef] [PubMed]
- Winkler, A.; Santo, N.; Ortenzi, M.A.; Bolzoni, E.; Bacchetta, R.; Tremolada, P. Does mechanical stress cause microplastic release from plastic water bottles? Water Res. 2019, 166, 115082. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, L.M.; Xu, E.G.; Larsson, H.C.E.; Tahara, R.; Maisuria, V.B.; Tufenkji, N. Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea. Environ. Sci. Technol. 2019, 53, 12300–12310. [Google Scholar] [CrossRef]
- Scherer, C.; Weber, A.; Stock, F.; Vurusic, S.; Egerci, H.; Kochleus, C.; Arendt, N.; Foeldi, C.; Dierkes, G.; Wagner, M.; et al. Comparative assessment of microplastics in water and sediment of a large European river. Sci. Total Environ. 2020, 738, 139866. [Google Scholar] [CrossRef]
- Rodrigues, M.O.; Abrantes, N.; Goncalves, F.J.M.; Nogueira, H.; Marques, J.C.; Goncalves, A.M.M. Spatial and temporal distribution of microplastics in water and sediments of a freshwater system (Antua River, Portugal). Sci. Total Environ. 2018, 633, 1549–1559. [Google Scholar] [CrossRef]
- Napper, I.E.; Baroth, A.; Barrett, A.C.; Bhola, S.; Chowdhury, G.W.; Davies, B.F.R.; Duncan, E.M.; Kumar, S.; Nelms, S.E.; Hasan Niloy, M.N.; et al. The abundance and characteristics of microplastics in surface water in the transboundary Ganges River. Environ. Pollut. 2021, 274, 116348. [Google Scholar] [CrossRef]
- Pan, Z.; Sun, Y.; Liu, Q.; Lin, C.; Sun, X.; He, Q.; Zhou, K.; Lin, H. Riverine microplastic pollution matters: A case study in the Zhangjiang River of Southeastern China. Mar. Pollut. Bull. 2020, 159, 111516. [Google Scholar] [CrossRef]
- Montecinos, S.; Tognana, S.; Pereyra, M.; Silva, L.; Tomba, J.P. Study of a stream in Argentina with a high concentration of microplastics: Preliminary analysis of the methodology. Sci. Total Environ. 2021, 760, 143390. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xie, Y.; Zhong, S.; Liu, J.; Qin, Y.; Gao, P. Microplastics in freshwater and wild fishes from Lijiang River in Guangxi, Southwest China. Sci. Total Environ. 2021, 755, 142428. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.Z.; Watts, A.J.R.; Winslow, B.O.; Galloway, T.S.; Barrows, A.P.W. Mountains to the sea: River study of plastic and non-plastic microfiber pollution in the northeast USA. Mar. Pollut. Bull. 2017, 124, 245–251. [Google Scholar] [CrossRef]
- Kapp, K.J.; Yeatman, E. Microplastic hotspots in the Snake and Lower Columbia rivers: A journey from the Greater Yellowstone Ecosystem to the Pacific Ocean. Environ. Pollut. 2018, 241, 1082–1090. [Google Scholar] [CrossRef]
- He, D.; Chen, X.; Zhao, W.; Zhu, Z.; Qi, X.; Zhou, L.; Chen, W.; Wan, C.; Li, D.; Zou, X.; et al. Microplastics contamination in the surface water of the Yangtze River from upstream to estuary based on different sampling methods. Environ. Res. 2021, 196, 110908. [Google Scholar] [CrossRef]
- Grbic, J.; Helm, P.; Athey, S.; Rochman, C.M. Microplastics entering northwestern Lake Ontario are diverse and linked to urban sources. Water Res. 2020, 174, 115623. [Google Scholar] [CrossRef] [PubMed]
- Amrutha, K.; Warrier, A.K. The first report on the source-to-sink characterization of microplastic pollution from a riverine environment in tropical India. Sci. Total Environ. 2020, 739, 140377. [Google Scholar] [CrossRef]
- Mai, Y.; Peng, S.; Lai, Z.; Wang, X. Measurement, quantification, and potential risk of microplastics in the mainstream of the Pearl River (Xijiang River) and its estuary, Southern China. Environ. Sci. Pollut. Res. Int. 2021, 22, 53127–53140. [Google Scholar] [CrossRef]
- Leslie, H.A.; Brandsma, S.H.; van Velzen, M.J.; Vethaak, A.D. Microplastics en route: Field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environ. Int. 2017, 101, 133–142. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Rocher, V.; Tassin, B. Synthetic and non-synthetic anthropogenic fibers in a river under the impact of Paris Megacity: Sampling methodological aspects and flux estimations. Sci. Total Environ. 2018, 618, 157–164. [Google Scholar] [CrossRef]
- Lahens, L.; Strady, E.; Kieu-Le, T.C.; Dris, R.; Boukerma, K.; Rinnert, E.; Gasperi, J.; Tassin, B. Macroplastic and microplastic contamination assessment of a tropical river (Saigon River, Vietnam) transversed by a developing megacity. Environ. Pollut. 2018, 236, 661–671. [Google Scholar] [CrossRef]
- Lin, L.; Zuo, L.; Peng, J.; Cai, L.; Fok, L.; Yan, Y.; Li, H.; Xu, X. Occurrence and distribution of microplastics in an urban river: A case study in the Pearl River along Guangzhou City, China. Sci. Total Environ. 2018, 644, 375–381. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Cai, C.; He, Y.; Chen, L.; Xiong, X.; Huang, H.; Tao, S.; Liu, W. Occurrence and characteristics of microplastics in the Haihe River: An investigation of a seagoing river flowing through a megacity in northern China. Environ. Pollut. 2020, 262, 114261. [Google Scholar] [CrossRef]
- Rowley, K.H.; Cucknell, A.C.; Smith, B.D.; Clark, P.F.; Morritt, D. London’s river of plastic: High levels of microplastics in the Thames water column. Sci. Total Environ. 2020, 740, 140018. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Wang, Q.; Zhang, J.; Li, Q.; Wang, Y.; Wang, M.; Huang, X. Distribution and characteristics of microplastics in urban waters of seven cities in the Tuojiang River basin, China. Environ. Res. 2020, 189, 109893. [Google Scholar] [CrossRef] [PubMed]
- Mani, T.; Blarer, P.; Storck, F.R.; Pittroff, M.; Wernicke, T.; Burkhardt-Holm, P. Repeated detection of polystyrene microbeads in the lower Rhine River. Environ. Pollut. 2019, 245, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Leng, Y.; Liu, X.; Huang, K.; Wang, J. Microplastics’ pollution and risk assessment in an urban river: A case study in the Yongjiang river, Nanning city, south China. Expo. Health 2020, 12, 141–151. [Google Scholar] [CrossRef]
- Bujaczek, T.; Kolter, S.; Locky, D.; Ross, M.S. Characterization of microplastics and anthropogenic fibers in surface waters of the North Saskatchewan River, Alberta, Canada. Facets 2021, 6, 26–43. [Google Scholar] [CrossRef]
- Chen, H.L.; Gibbins, C.N.; Selvam, S.B.; Ting, K.N. Spatio-temporal variation of microplastic along a rural to urban transition in a tropical river. Environ. Pollut. 2021, 289, 117895. [Google Scholar] [CrossRef]
- Sekudewicz, I.; Dabrowska, A.M.; Syczewski, M.D. Microplastic pollution in surface water and sediments in the urban section of the Vistula River (Poland). Sci. Total Environ. 2021, 762, 143111. [Google Scholar] [CrossRef]
- McCormick, A.R.; Hoellein, T.J.; London, M.G.; Hittie, J.; Scott, J.W.; Kelly, J.J. Microplastic in surface waters of urban rivers: Concentration, sources, and associated bacterial assemblages. Ecosphere 2016, 7, e01556. [Google Scholar] [CrossRef]
- Schell, T.; Hurley, R.; Nizzetto, L.; Rico, A.; Vighi, M. Spatio-temporal distribution of microplastics in a Mediterranean river catchment: The importance of wastewater as an environmental pathway. J. Hazard. Mater. 2021, 420, 126481. [Google Scholar] [CrossRef]
- Cheung, P.K.; Hung, P.L.; Fok, L. River Microplastic Contamination and Dynamics upon a Rainfall Event in Hong Kong, China. Environ. Process. 2019, 6, 253–264. [Google Scholar] [CrossRef]
- Wang, G.; Lu, J.; Li, W.; Ning, J.; Zhou, L.; Tong, Y.; Liu, Z.; Zhou, H.; Xiayihazi, N. Seasonal variation and risk assessment of microplastics in surface water of the Manas River Basin, China. Ecotoxicol. Environ. Saf. 2021, 208, 111477. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Qin, Y.; Li, W.; Yang, W.; Meng, Q.; Yang, J. Microplastic contamination in freshwater: First observation in Lake Ulansuhai, Yellow River Basin, China. Environ. Chem. Lett. 2019, 17, 1821–1830. [Google Scholar] [CrossRef]
- Uurasjarvi, E.; Hartikainen, S.; Setala, O.; Lehtiniemi, M.; Koistinen, A. Microplastic concentrations, size distribution, and polymer types in the surface waters of a northern European lake. Water Environ. Res. 2020, 92, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Velasco, A.d.J.N.; Rard, L.; Blois, W.; Lebrun, D.; Lebrun, F.; Pothe, F.; Stoll, S. Microplastic and fibre contamination in a remote mountain lake in Switzerland. Water 2020, 12, 2410. [Google Scholar] [CrossRef]
- Dong, H.; Wang, L.; Wang, X.; Xu, L.; Chen, M.; Gong, P.; Wang, C. Microplastics in a Remote Lake Basin of the Tibetan Plateau: Impacts of Atmospheric Transport and Glacial Melting. Environ. Sci. Technol. 2021, 15, 15. [Google Scholar] [CrossRef]
- Bertoldi, C.; Lara, L.Z.; Mizushima, F.A.L.; Martins, F.C.G.; Battisti, M.A.; Hinrichs, R.; Fernandes, A.N. First evidence of microplastic contamination in the freshwater of Lake Guaiba, Porto Alegre, Brazil. Sci. Total Environ. 2021, 759, 143503. [Google Scholar] [CrossRef]
- Di, M.; Wang, J. Microplastics in surface waters and sediments of the Three Gorges Reservoir, China. Sci. Total Environ. 2018, 616–617, 1620–1627. [Google Scholar] [CrossRef]
- Di, M.; Liu, X.; Wang, W.; Wang, J. Manuscript prepared for submission to environmental toxicology and pharmacology pollution in drinking water source areas: Microplastics in the Danjiangkou Reservoir, China. Environ. Toxicol. Pharmacol. 2019, 65, 82–89. [Google Scholar] [CrossRef]
- Tan, X.; Yu, X.; Cai, L.; Wang, J.; Peng, J. Microplastics and associated PAHs in surface water from the Feilaixia Reservoir in the Beijiang River, China. Chemosphere 2019, 221, 834–840. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Pan, X.; Zhang, S.; Li, D.; Zhai, W.; Wang, Z.; Tao, J.; Mi, C.; Li, Q.; Crittenden, J.C. Distribution and source of microplastics in China’s second largest reservoir—Danjiangkou Reservoir. J. Environ. Sci. 2021, 102, 74–84. [Google Scholar] [CrossRef]
- Olesen, K.B.; Stephansen, D.A.; Alst, N.v.; Vollertsen, J. Microplastics in a stormwater pond. Water 2019, 11, 1466. [Google Scholar] [CrossRef]
- Napper, I.E.; Davies, B.F.R.; Clifford, H.; Elvin, S.; Koldewey, H.J.; Mayewski, P.A.; Miner, K.R.; Potocki, M.; Elmore, A.C.; Gajurel, A.P.; et al. Reaching New Heights in Plastic Pollution—Preliminary Findings of Microplastics on Mount Everest. One Earth 2020, 3, 621–630. [Google Scholar] [CrossRef]
- Panno, S.V.; Kelly, W.R.; Scott, J.; Zheng, W.; McNeish, R.E.; Holm, N.; Hoellein, T.J.; Baranski, E.L. Microplastic Contamination in Karst Groundwater Systems. Ground Water 2019, 57, 189–196. [Google Scholar] [CrossRef]
- Murphy, F.; Ewins, C.; Carbonnier, F.; Quinn, B. Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment. Environ. Sci. Technol. 2016, 50, 5800–5808. [Google Scholar] [CrossRef]
- Bayo, J.; Olmos, S.; Lopez-Castellanos, J. Microplastics in an urban wastewater treatment plant: The influence of physicochemical parameters and environmental factors. Chemosphere 2020, 238, 124593. [Google Scholar] [CrossRef]
- Ding, N.; An, D.; Yin, X.; Sun, Y. Detection and evaluation of microbeads and other microplastics in wastewater treatment plant samples. Environ. Sci. Pollut. Res. Int. 2020, 27, 15878–15887. [Google Scholar] [CrossRef]
- Edo, C.; Gonzalez-Pleiter, M.; Leganes, F.; Fernandez-Pinas, F.; Rosal, R. Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge. Environ. Pollut. 2020, 259, 113837. [Google Scholar] [CrossRef] [PubMed]
- Pittura, L.; Foglia, A.; Akyol, C.; Cipolletta, G.; Benedetti, M.; Regoli, F.; Eusebi, A.L.; Sabbatini, S.; Tseng, L.Y.; Katsou, E.; et al. Microplastics in real wastewater treatment schemes: Comparative assessment and relevant inhibition effects on anaerobic processes. Chemosphere 2021, 262, 128415. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, S.; Beal, M.; Maley, J.; Brinkmann, M. Qualitative and quantitative analysis of microplastics and microfiber contamination in effluents of the City of Saskatoon wastewater treatment plant. Environ. Sci. Pollut. Res. Int. 2021, 24, 24. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, B.; Duan, L.; Zhang, Y.; Zhou, Y.; Sui, Q.; Xu, D.; Qu, H.; Yu, G. Occurrence and distribution of microplastics in domestic, industrial, agricultural and aquacultural wastewater sources: A case study in Changzhou, China. Water Res. 2020, 182, 115956. [Google Scholar] [CrossRef] [PubMed]
- Qian, N.; Gao, X.; Lang, X.; Deng, H.; Bratu, T.M.; Chen, Q.; Stapleton, P.; Yan, B.; Min, W. Rapid single-particle chemical imaging of nanoplastics by SRS microscopy. Proc. Natl. Acad. Sci. USA 2024, 121, e2300582121. [Google Scholar] [CrossRef]
- Hendrickson, E.; Minor, E.C.; Schreiner, K. Microplastic Abundance and Composition in Western Lake Superior As Determined via Microscopy, Pyr-GC/MS, and FTIR. Environ. Sci. Technol. 2018, 52, 1787–1796. [Google Scholar] [CrossRef]
- Schmidt, L.K.; Bochow, M.; Imhof, H.K.; Oswald, S.E. Multi-temporal surveys for microplastic particles enabled by a novel and fast application of SWIR imaging spectroscopy—Study of an urban watercourse traversing the city of Berlin, Germany. Environ. Pollut. 2018, 239, 579–589. [Google Scholar] [CrossRef]
- Nakamura, R.; Narikiyo, H.; Gon, M.; Tanaka, K.; Chujo, Y. An optical sensor for discriminating the chemical compositions and sizes of plastic particles in water based on water-soluble networks consisting of polyhedral oligomeric silsesquioxane presenting dual-color luminescence. Mater. Chem. Front. 2019, 3, 2690–2695. [Google Scholar] [CrossRef]
- Asamoah, B.O.; Amoani, J.; Roussey, M.; Peiponen, K.E. Laser beam scattering for the detection of flat, curved, smooth, and rough microplastics in water. Opt. Rev. 2020, 27, 217–224. [Google Scholar] [CrossRef]
- Piarulli, S.; Sciutto, G.; Oliveri, P.; Malegori, C.; Prati, S.; Mazzeo, R.; Airoldi, L. Rapid and direct detection of small microplastics in aquatic samples by a new near infrared hyperspectral imaging (NIR-HSI) method. Chemosphere 2020, 260, 127655. [Google Scholar] [CrossRef]
- Cho, S.; Kim, Y.; Chung, H. Feasibility study for simple on-line Raman spectroscopic detection of microplastic particles in water using perfluorocarbon as a particle-capturing medium. Anal. Chim. Acta 2021, 1165, 338518. [Google Scholar] [CrossRef]
- Rodrigues, M.O.; Goncalves, A.M.M.; Goncalves, F.J.M.; Nogueira, H.; Marques, J.C.; Abrantes, N. Effectiveness of a methodology of microplastics isolation for environmental monitoring in freshwater systems. Ecol. Indic. 2018, 89, 488–495. [Google Scholar] [CrossRef]
- Scircle, A.; Cizdziel, J.V.; Missling, K.; Li, L.; Vianello, A. Single-Pot Method for the Collection and Preparation of Natural Water for Microplastic Analyses: Microplastics in the Mississippi River System during and after Historic Flooding. Environ. Toxicol. Chem. 2020, 39, 986–995. [Google Scholar] [CrossRef] [PubMed]
- Mari, A.; Bordos, G.; Gergely, S.; Buki, M.; Hahn, J.; Palotai, Z.; Besenyo, G.; Szabo, E.; Salgo, A.; Kriszt, B.; et al. Validation of microplastic sample preparation method for freshwater samples. Water Res. 2021, 202, 117409. [Google Scholar] [CrossRef]
- Pittroff, M.; Muller, Y.K.; Witzig, C.S.; Scheurer, M.; Storck, F.R.; Zumbulte, N. Microplastic analysis in drinking water based on fractionated filtration sampling and Raman microspectroscopy. Environ. Sci. Pollut. Res. Int. 2021, 29, 29. [Google Scholar] [CrossRef]
- Yuan, C.; Almuhtaram, H.; McKie, M.J.; Andrews, R.C. Assessment of microplastic sampling and extraction methods for drinking waters. Chemosphere 2021, 286, 131881. [Google Scholar] [CrossRef]
- Zhou, X.X.; He, S.; Gao, Y.; Li, Z.C.; Chi, H.Y.; Li, C.J.; Wang, D.J.; Yan, B. Protein Corona-Mediated Extraction for Quantitative Analysis of Nanoplastics in Environmental Waters by Pyrolysis Gas Chromatography/Mass Spectrometry. Anal. Chem. 2021, 93, 6698–6705. [Google Scholar] [CrossRef]
- Jenner, L.C.; Rotchell, J.M.; Bennett, R.T.; Cowen, M.; Tentzeris, V.; Sadofsky, L.R. Detection of microplastics in human lung tissue using microFTIR spectroscopy. Sci. Total Environ. 2022, 831, 154907. [Google Scholar] [CrossRef]
- Leslie, H.A.; van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef] [PubMed]
- Marfella, R.; Prattichizzo, F.; Sardu, C.; Fulgenzi, G.; Graciotti, L.; Spadoni, T.; D’Onofrio, N.; Scisciola, L.; La Grotta, R.; Frige, C.; et al. Microplastics and Nanoplastics in Atheromas and Cardiovascular Events. N. Engl. J. Med. 2024, 390, 900–910. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.; Bang, J.; Kim, T.; Oh, Y.; Hwang, Y.; Hong, J. In vitro chemical and physical toxicities of polystyrene microfragments in human-derived cells. J. Hazard. Mater. 2020, 400, 123308. [Google Scholar] [CrossRef] [PubMed]
- Ju, P.; Zhang, Y.; Zheng, Y.; Gao, F.; Jiang, F.; Li, J.; Sun, C. Probing the toxic interactions between polyvinyl chloride microplastics and Human Serum Albumin by multispectroscopic techniques. Sci. Total Environ. 2020, 734, 139219. [Google Scholar] [CrossRef]
- Tan, H.; Yue, T.; Xu, Y.; Zhao, J.; Xing, B. Microplastics Reduce Lipid Digestion in Simulated Human Gastrointestinal System. Environ. Sci. Technol. 2020, 54, 12285–12294. [Google Scholar] [CrossRef]
- Busch, M.; Bredeck, G.; Kampfer, A.A.M.; Schins, R.P.F. Investigations of acute effects of polystyrene and polyvinyl chloride micro- and nanoplastics in an advanced in vitro triple culture model of the healthy and inflamed intestine. Environ. Res. 2021, 193, 110536. [Google Scholar] [CrossRef] [PubMed]
- Busch, M.; Kampfer, A.A.M.; Schins, R.P.F. An inverted in vitro triple culture model of the healthy and inflamed intestine: Adverse effects of polyethylene particles. Chemosphere 2021, 284, 131345. [Google Scholar] [CrossRef]
- Hwang, J.; Choi, D.; Han, S.; Choi, J.; Hong, J. An assessment of the toxicity of polypropylene microplastics in human derived cells. Sci. Total Environ. 2019, 684, 657–669. [Google Scholar] [CrossRef]
- He, Y.; Li, J.; Chen, J.; Miao, X.; Li, G.; He, Q.; Xu, H.; Li, H.; Wei, Y. Cytotoxic effects of polystyrene nanoplastics with different surface functionalization on human HepG2 cells. Sci. Total Environ. 2020, 723, 138180. [Google Scholar] [CrossRef]
- Bolivar-Subirats, G.; Rivetti, C.; Cortina-Puig, M.; Barata, C.; Lacorte, S. Occurrence, toxicity and risk assessment of plastic additives in Besos river, Spain. Chemosphere 2021, 263, 263. [Google Scholar] [CrossRef] [PubMed]
- Sixto, A.; El-Morabit, B.; Trujillo-Rodriguez, M.J.; Carrasco-Correa, E.J.; Miro, M. An automatic flow-through system for exploration of the human bioaccessibility of endocrine disrupting compounds from microplastics. Analyst 2021, 146, 3858–3870. [Google Scholar] [CrossRef]
- Trujillo-Rodriguez, M.J.; Gomila, R.M.; Martorell, G.; Miro, M. Microscale extraction versus conventional approaches for handling gastrointestinal extracts in oral bioaccessibility assays of endocrine disrupting compounds from microplastic contaminated beach sand. Environ. Pollut. 2021, 272, 115992. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Mohamed Nor, N.H.; Hermsen, E.; Kooi, M.; Mintenig, S.M.; De France, J. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res. 2019, 155, 410–422. [Google Scholar] [CrossRef]
Concentration (MPs/L, Unless Otherwise Indicated) | |||||||
---|---|---|---|---|---|---|---|
Author | Number of Sampling Sites/Points | Number of Samples | Sample Volume [Sampling Point] (Method) | Mean | Range | Polymer | Polymer Identification Method |
Tap Water | |||||||
[3] | 5 | 45 | 1 L (gb) | 6 ± 3 (≥500 µm); 56 ± 14 (6.5–53 µm) | na | PE > PVC > PET, PA, PP, PAM, PTFE, PS, PMMA (both sizes) | ATR-FTIR |
[4] | 42 | 126 | 1 L (gb) | 0.018 ± 0.007 | 5 ± 2 to 91 ± 14 | PTT, epoxy resin | µ-Raman |
[5] | 38 | 76 | 1 L (HDPE b) | 440 ± 275 | 0 to 1.25 × 103 | PE ~ PP > PE/PP > PPS ~ PS > PET | µ-Raman |
[6] | 2 | 4 | 1 L | na | 0 to 1.8 | PE | µ-FTIR |
[7] | 17 | 20 | 50 L (s-s sc) | 0.02 | na | PET, PP, PS, and ABS | µ-FTIR |
[8] | 9 | 18 | 0.25–0.5 m3 [TS & HC]; 0.5–1.5 m3 [tap] (v-r s-a) | 0 | 0 | na | µ-Raman |
Water source (raw water) to treated, distribution system, and drinking or tap water | |||||||
[9] | 3/6 | 72 | 1 L [DW] | na | 338 ± 76 to 628 ± 28 (DW) | PET > PP, PAM (TPs), and PVC (TP2); PE > PET > PP, PAM (TP3) | FTIR and µ-Raman |
[10] | 23 | 23 | 300–1000 L [raw]; 1200–2500 L [tr] | na | 0 to 0.001 (tr); 0 to 0.003 (m) | PEST >> PA > PVC (2 tr; 4 HH m) | µ-FTIR |
[11] | 2/8 | 48 | 2 L | na | 14 ± 1 (TP-M); 151 ± 4 (TP-P) | Cellulose acetate > PE, PET > PVC, PBA, PTFE (TP-M); cellulose acetate, PE, PET, PP, PS, PVC (TP-P) | µ-Raman |
[12] | 14 (7 tap; 7 raw) | 42 | 4.5 L [tap] (gb); 50 L [raw] | 7 × 102 ± 6 × 102 (tap); 4 × 102 ± 3 × 102 (raw) | 0.3–1.6 (tap) | Rayon > PET > PE (tap); PET > Rayon > PE, PVC, PEST (raw) | µ-FTIR |
[13] | 6 (4 TPs; 2 canals)/14 (8 TPs; 6 canals) | 28 | ~100 L | na | 0.44–1.00 (tap-E); 0.24–1.00 (tap-W) | PE > PET/PP > PS > PVC (tap); PE, PET > PP > PS, PVC (canal) | µ-Raman |
[14] | 5 | 15 (ds-1); 14 (ds-2) | 200–1100 L | 0.174 ± 0.405 (ds) | 19 ± 14 to 809 ± 688 (0.004 ± 0.007 to 2.6 ± 3.0 ng/L) | PEST (ds-1 pump, ds-2 hydrant); PA (ds-2 pump, ds-1 hydrant). PMMA, PVC, PS | μ-FTIR and py-GCMS |
[15] | 3 | 12 | 30 L | 2.75 × 103 (raw); 3.52 × 102 (tr); 3.44 × 102 (tap) | 3.4 x102 to 4.0 × 102 (tr); 2.7 × 102 to 4.0 × 102 (tap) | PET, PE > PP >>> PA (tr); PE, PET > PVC, PP >>> PA (tap) | μ-FTIR |
[16] | 5 | 10 | 1 L | 13.2 (tap); 95.6 (tr) | na | PEST > PS, nylon (tap); PEST > PP, PVC, nylon (tr) | µ-FTIR |
Removal efficiency | |||||||
[17] | 16 | 69 | 0.18 m3 [raw]; 19.88 m3 [tap] | 1.5 × 104 MPs/m3 (raw, >LOQ) | 0.001–0.024 (tap, >LOD but <LOQ) | ABS, PA, PE, PET, PP, PMMA, PS, PVC, PU (>LOD, <LOQ; tap); PE, PET, PP (raw) | µ-FTIR |
[18] | 1/5 | 19 | 2.5 L [raw] (grab); 50 L [sf & GAC] and 100 L [RO & final] | na | 0.06 ± 0.04 (tr); 9.6 × 102 ± 4.6 × 102 MPs/m3 (raw) | PES > PP (tr); PES > PE (raw) | μ-FT-IR |
[19] | 4 | 12 | 1 m3 | 6.1 (tr)–93.1 (raw) µg/m3 or [6.1–93.1 ng/L] | na | PE >> PA ~ PET (ds) | py-GCMS |
[20] | 1/5 | 10 | 10 L (gb) | Dry: 4.5 × 102 (tr); 1.4 × 103 (raw). Rainy: 7.7 × 102 (tr); 1.8 × 103 (raw) | na | PE, PP, PVC, PET, PS (tr) | ATR-FTIR and confocal Raman |
[21] | 2/14 | 28 | 2.5 L (grab) | TP 1: 3.1 (tr); 6.6 (raw). TP 2: 2.1 (tr); 8.8 (raw) | na | Cellophane (tr) | FTIR |
Author | Number of Samples | Sample Volume | Removal (%) | Polymer | Polymer Identification Method |
---|---|---|---|---|---|
[22] | 6 (Mg/Al ratios); 8 (pH) | na | >90 | PS | UV–vis spectrophotometer and FTIR |
[23] | 21 (7 different dosages of coagulant aid) | na | 54.70% (ASA-conv dose); 91.45% (PAM high dose) | PET | FTIR, XPS |
[25] | na | na | 99.9% MW degradation; 42.7% mineralization (O3) | PS | FTIR, XPS |
[24] | 84 (7 different dosages of nano-Fe3O4 for each of 4 MPs-triplicate) | 300 mL | 86.87± 6.92% (PE); 85.05 ± 4.70% (PP); 86.11 ± 6.21% (PS); 62.83 ± 8.34%. (PET) | PE, PP, PS, PET | SEM; μ-FTIR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarate-Bermudez, M.; Casillas, G.; Hils, J.; Yeh, M.; Carroll, Y. Human Exposures to Micro- and Nanoplastics in Water and Data Needed to Understand Potential Health Effects—A-State of the Science Review. Microplastics 2025, 4, 60. https://doi.org/10.3390/microplastics4030060
Zarate-Bermudez M, Casillas G, Hils J, Yeh M, Carroll Y. Human Exposures to Micro- and Nanoplastics in Water and Data Needed to Understand Potential Health Effects—A-State of the Science Review. Microplastics. 2025; 4(3):60. https://doi.org/10.3390/microplastics4030060
Chicago/Turabian StyleZarate-Bermudez, Max, Gaston Casillas, Janie Hils, Michael Yeh, and Yulia Carroll. 2025. "Human Exposures to Micro- and Nanoplastics in Water and Data Needed to Understand Potential Health Effects—A-State of the Science Review" Microplastics 4, no. 3: 60. https://doi.org/10.3390/microplastics4030060
APA StyleZarate-Bermudez, M., Casillas, G., Hils, J., Yeh, M., & Carroll, Y. (2025). Human Exposures to Micro- and Nanoplastics in Water and Data Needed to Understand Potential Health Effects—A-State of the Science Review. Microplastics, 4(3), 60. https://doi.org/10.3390/microplastics4030060