Evaluation of Heavy Metal Adsorption Efficiency of Biochars Derived from Agricultural Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Adsorbents
2.2. Adsorbates
2.3. Adsorption Study
3. Results
3.1. Adsorbents Characterization
3.2. pHpzc and Surface Charge
3.3. Adsorption Efficiency and Capacity
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IARC. Agents Classified by the IARC Monographs; IARC: Lyon, France, 2016; Volumes 1–116. [Google Scholar]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Molecular, clinical and environmental toxicicology Volume 3: Environmental Toxicology. Mol. Clin. Environ. Toxicol. 2012, 101, 133–164. [Google Scholar]
- Pan, J.; Plant, J.A.; Voulvoulis, N.; Oates, C.J.; Ihlenfeld, C. Cadmium levels in Europe: Implications for human health. Environ. Geochem. Health 2010, 32, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Godt, J.; Scheidig, F.; Grosse-Siestrup, C.; Esche, V.; Brandenburg, P.; Reich, A.; Groneberg, D.A. The toxicity of cadmium and resulting hazards for human health. J. Occup. Med. Toxicol. 2006, 1, 22. [Google Scholar] [CrossRef]
- Faroon, O.; Annette, A.; Wright, S.; Tucker, P.; Jenkins, K. Toxicological Profile for Cadmium; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2012. [Google Scholar]
- McMillan, D.E. A brief history of the neurobehavioral toxicity of manganese: Some unanswered questions. Neurotoxicology 1999, 20, 499–507. [Google Scholar] [PubMed]
- Seilkop, S.K.; Oller, A.R. Respiratory cancer risks associated with low-level nickel exposure: An integrated assessment based on animal, epidemiological, and mechanistic data. Regul. Toxicol. Pharmacol. 2003, 37, 173–190. [Google Scholar] [CrossRef]
- Schaumlöffel, D. Nickel species: Analysis and toxic effects. J. Trace Elem. Med. Biol. 2012, 26, 1–6. [Google Scholar] [CrossRef]
- Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M.; Alexis, F.; Guerrero, V.H. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environ. Technol. Innov. 2021, 22, 101504. [Google Scholar] [CrossRef]
- Oladoye, P.O. Natural, low-cost adsorbents for toxic Pb(II) ion sequestration from (waste) water: A state-of-the-art review. Chemosphere 2022, 287, 132130. [Google Scholar] [CrossRef]
- Kumkum, P.; Kumar, S. A Review on Biochar as an Adsorbent for Pb(II) Removal from Water. Biomass 2024, 4, 243–272. [Google Scholar] [CrossRef]
- Macedo, J.C.A.; Shirinkar, M.; Landers, R.; Rosa, A.H. Exploring Biomass Waste-Derived Biochar as a Catalyst for Levulinic Acid Conversion to γ-Valerolactone: Insights into Synthesis, Characterization, and Catalytic Performance. Biomass 2025, 5, 29. [Google Scholar] [CrossRef]
- Joseph, N.T.; Chinonye, O.E.; Philomena, I.K.; Christian, A.C.; Elijah, O.C. Isotherm and kinetic modeling of adsorption of dyestuffs onto kola nut (Cola acuminata) shell activated carbon. J. Chem. Technol. Metall. 2016, 51, 188–201. [Google Scholar]
- Tariq, W.; Arslan, C.; Tayyab, N.; Rashid, H.; Nasir, A. Application of Agro-Based Adsorbent for Removal of Heavy Metals, 1st ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Kali, A.; Amar, A.; Loulidi, I.; Jabri, M.; Hadey, C.; Lgaz, H.; Alrashdi, A.A.; Boukhlifi, F. Characterization and adsorption capacity of four low-cost adsorbents based on coconut, almond, walnut, and peanut shells for copper removal. Biomass Convers. Biorefinery 2022, 14, 3655–3666. [Google Scholar] [CrossRef]
- ISO 9277:2010; Determination of the Specific Surface Area of Solids by Gas Adsorption-BET Method. ISO: Geneva, Switzerland, 2010.
- Vlaev, L. Adsorption and Catalysis; Baltika-2002: Burgas, Bulgaria, 2014. [Google Scholar]
- Stoeckli, F.; López-Ramón, M.; Hugi-Cleary, D.; Guillot, A. Micropore sizes in activated carbons determined from the Dubinin–Radushkevich equation. Carbon 2001, 39, 1115–1116. [Google Scholar] [CrossRef]
- BDS, EN ISO 17294-2: 2016; Water Quality—Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS)—Part 2: Determination of Selected Elements Including Uranium Isotopes. ISO: Geneva, Switzerland, 2016.
- Gonsalvesh, L.; Marinov, S.P.; Gryglewicz, G.; Carleer, R.; Yperman, J. Preparation, characterization and application of polystyrene based activated carbons for Ni(II) removal from aqueous solution. Fuel Process. Technol. 2016, 149, 75–85. [Google Scholar] [CrossRef]
- Zeng, F.; Li, Z.; Li, X.; Wang, J.; Kong, Z.; Sun, Y.; Liu, Z.; Feng, H. Almond-derived origami-like hierarchically porous and N/O co-functionalized carbon sheet for high-performance supercapacitor. Appl. Surf. Sci. 2019, 467–468, 229–235. [Google Scholar] [CrossRef]
- Liu, S.T.; Chen, X.G.; Zhang, A.B.; Yan, K.K.; Ye, Y. Electromagnetic Performance of Rice Husk Ash. BioResources 2014, 9, 2328–2340. [Google Scholar] [CrossRef]
- Bhavani, P.; Kumar, D.P.; Hussain, M.; Aminabhavi, T.M.; Park, Y.K. Eco-friendly rice husk derived biochar as a highly efficient noble Metal-Free cocatalyst for high production of H2 using solar light irradiation. Chem. Eng. J. 2022, 434, 134743. [Google Scholar] [CrossRef]
- Genieva, S.; Gonsalvesh, L.; Georgieva, V.; Tavlieva, M.; Vlaev, L. Kinetic analysis and pyrolysis mechanism of raw and impregnated almond shells. Thermochim. Acta 2021, 698, 178877. [Google Scholar] [CrossRef]
- Ye, Y.; Liang, L.; Zhang, X.; Sun, J. Simple carbonaceous-material-loaded mesoporous SiO2 composite catalyst for epoxide-CO2 cycloaddition reaction. J. Colloid Interface Sci. 2022, 610, 818–829. [Google Scholar] [CrossRef]
- Xiao, R.; Yang, W. Influence of temperature on organic structure of biomass pyrolysis products. Renew. Energy 2013, 50, 136–141. [Google Scholar] [CrossRef]
- Adamczyk, A. Effects of applying different type SiO2 precursors on the structure of selected zirconia-silica gels. J. Mol. Struct. 2022, 1264, 133143. [Google Scholar] [CrossRef]
- Heakal, F.E.-T.; Abd-Ellatif, W.R.; Tantawy, N.S.; Taha, A.A. Impact of pH and temperature on the electrochemical and semiconducting properties of zinc in alkaline buffer media. RSC Adv. 2018, 8, 3816–3827. [Google Scholar] [CrossRef] [PubMed]
- Duranoglu, D.; Beker, U. Cr(VI) Adsorption Onto Biomass Waste Material-Derived Activated Carbon. In Desalination Updates; IntechOpen: London, UK, 2015. [Google Scholar]
- Niazi, N.K.; Bibi, I.; Shahid, M.; Ok, Y.S.; Shaheen, S.M.; Rinklebe, J.; Wang, H.; Murtaza, B.; Islam, E.; Nawaz, M.F.; et al. Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: Investigating arsenic fate using integrated spectroscopic and microscopic techniques. Sci. Total Environ. 2018, 621, 1642–1651. [Google Scholar] [CrossRef]
- Lima, I.M.; Boateng, A.A.; Klasson, K.T. Physicochemical and adsorptive properties of fast-pyrolysis bio-chars and their steam activated counterparts. J. Chem. Technol. Biotechnol. 2010, 85, 1515–1521. [Google Scholar] [CrossRef]
- Singh, E.; Kumar, A.; Mishra, R.; You, S.; Singh, L.; Kumar, S.; Kumar, R. Pyrolysis of waste biomass and plastics for production of biochar and its use for removal of heavy metals from aqueous solution. Bioresour. Technol. 2021, 320, 124278. [Google Scholar] [CrossRef]
- Chen, W.H.; Hoang, A.T.; Nižetić, S.; Pandey, A.; Cheng, C.K.; Luque, R.; Ong, H.C.; Thomas, S.; Nguyen, X.P. Biomass-derived biochar: From production to application in removing heavy metal-contaminated water. Process Saf. Environ. Prot. 2022, 160, 704–733. [Google Scholar] [CrossRef]
- Neris, J.B.; Luzardo, F.H.M.; da Silva, E.G.P.; Velasco, F.G. Evaluation of adsorption processes of metal ions in multi-element aqueous systems by lignocellulosic adsorbents applying different isotherms: A critical review. Chem. Eng. J. 2019, 357, 404–420. [Google Scholar] [CrossRef]
Calculation Procedure | Parameters | Biochars | |||
---|---|---|---|---|---|
AS-BC | WS-BC | PS-BC | RH-BC | ||
BET | V0.95, cm3/g | 0.1948 | 0.1605 | 0.1932 | 0.2365 |
C | 4828 | 629 | 2509 | 486 | |
SBET, m2/g | 404 | 332 | 440 | 149 | |
R | 0.9997 | 0.9998 | 0.9999 | 0.9999 | |
HK or BJH | rp, nm | 0.29 | 1.90 | 0.29 | 5.40 |
rmax, nm | 0.29 | 1.30 | 0.30 | 4.10 | |
DR | Vmicro, cm3/g | 0.1619 | 0.1243 | 0.1672 | 0.0544 |
Vmezo, cm3/g | 0.0329 | 0.0362 | 0.0258 | 0.1821 | |
Vmicro, % | 83.0 | 77.4 | 86.5 | 23.0 | |
Vmezo, % | 17.0 | 22.6 | 13.5 | 77.0 |
Adsorbents | pHpzc |
---|---|
RH-BC | 9.630 |
PC-BC | 8.710 |
AS-BC | 8.083 |
WS-BC | 6.036 |
Ions | Adsorbent | Qe, mg/g | pH Medium |
---|---|---|---|
Crtot | RH-BC | 0.018 | 2.5 |
Mn(II) | WS-BC | 0.053 | 8.5 |
Fetot | WS-BC | 2.419 | 8.5 |
Co(II) | WS-BC | 0.002 | 8.5 |
Ni(II) | RH-BC | 0.021 | 3.4 |
Zn(II) | RH-BC | 0.164 | 3.4 |
Astot | PS-BC | 0.003 | 2.5 |
Cd(II) | WS-BC | 1.820 | 3.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgieva, V.; Gonsalvesh, L.; Mileva, S.; Hamanova, M.; Yemendzhiev, H. Evaluation of Heavy Metal Adsorption Efficiency of Biochars Derived from Agricultural Waste. Biomass 2025, 5, 33. https://doi.org/10.3390/biomass5020033
Georgieva V, Gonsalvesh L, Mileva S, Hamanova M, Yemendzhiev H. Evaluation of Heavy Metal Adsorption Efficiency of Biochars Derived from Agricultural Waste. Biomass. 2025; 5(2):33. https://doi.org/10.3390/biomass5020033
Chicago/Turabian StyleGeorgieva, Velyana, Lenia Gonsalvesh, Sonia Mileva, Mariyana Hamanova, and Hyusein Yemendzhiev. 2025. "Evaluation of Heavy Metal Adsorption Efficiency of Biochars Derived from Agricultural Waste" Biomass 5, no. 2: 33. https://doi.org/10.3390/biomass5020033
APA StyleGeorgieva, V., Gonsalvesh, L., Mileva, S., Hamanova, M., & Yemendzhiev, H. (2025). Evaluation of Heavy Metal Adsorption Efficiency of Biochars Derived from Agricultural Waste. Biomass, 5(2), 33. https://doi.org/10.3390/biomass5020033