Exploring Biomass Waste-Derived Biochar as a Catalyst for Levulinic Acid Conversion to γ-Valerolactone: Insights into Synthesis, Characterization, and Catalytic Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis of Biochar-Supported Ru/Fe Particles
2.3. Material Characterization
2.4. Effect of Temperature Pyrolysis on the GVL Production
2.5. Statistical Analysis of GVL Production with BC500Fe/3%Ru as the Catalyst
2.5.1. Fractional Factorial Design
2.5.2. Response Surface of the Central Composite
2.6. Analysis of the Hydrogenation Products of LA
2.7. Cost Estimates
3. Results and Discussion
3.1. BCxFe/y%Ru Catalyst Characterization
3.2. Effect of the Temperature Pyrolysis on the GVL Production
3.3. Statistical Analysis of GVL Production with BC500Fe/3%Ru as the Catalyst
3.3.1. Fractional Factorial Design
3.3.2. Response Surface of the Central Composite
3.4. Control Catalyst Samples
3.5. Recyclability of BC500Fe/3%Ru Catalysts
3.6. Investigation of Metal Leaching
3.7. Effect of Triethylamine and Formate Loading on the LA Conversion to GVL Yield Production
3.8. Cost Estimates
3.9. LA Conversion with Catalysts Is Reported in This Work and the Literature
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lopez, G.; Keiner, D.; Fasihi, M.; Koiranen, T.; Breyer, C. From Fossil to Green Chemicals: Sustainable Pathways and New Carbon Feedstocks for the Global Chemical Industry. Energy Environ. Sci. 2023, 16, 2879–2909. [Google Scholar] [CrossRef]
- Singh, N.; Singhania, R.R.; Nigam, P.S.; Dong, C.-D.; Patel, A.K.; Puri, M. Global Status of Lignocellulosic Biorefinery: Challenges and Perspectives. Bioresour. Technol. 2022, 344, 126415. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, S.; Jin, Z.; Li, Z.; Liu, Q.; Zhang, K. Oil and Gas Pathway to Net-Zero: Review and Outlook. Energy Strategy Rev. 2023, 45, 101048. [Google Scholar] [CrossRef]
- Huang, X.; Liu, K.; Vrijburg, W.L.; Ouyang, X.; Iulian Dugulan, A.; Liu, Y.; Tiny Verhoeven, M.W.G.M.; Kosinov, N.A.; Pidko, E.A.; Hensen, E.J.M. Hydrogenation of Levulinic Acid to γ-Valerolactone over Fe-Re/TiO2 Catalysts. Appl. Catal. B Environ. 2020, 278, 119314. [Google Scholar] [CrossRef]
- Feng, J.; Gu, X.; Xue, Y.; Han, Y.; Lu, X. Production of γ-Valerolactone from Levulinic Acid over a Ru/C Catalyst Using Formic Acid as the Sole Hydrogen Source. Sci. Total Environ. 2018, 633, 426–432. [Google Scholar] [CrossRef]
- Mujtaba, M.; Fernandes Fraceto, L.; Fazeli, M.; Mukherjee, S.; Savassa, S.M.; Araujo de Medeiros, G.; do Espírito Santo Pereira, A.; Mancini, S.D.; Lipponen, J.; Vilaplana, F. Lignocellulosic Biomass from Agricultural Waste to the Circular Economy: A Review with Focus on Biofuels, Biocomposites and Bioplastics. J. Clean. Prod. 2023, 402, 136815. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Liu, X.; Tian, Q.; Hu, C. The Promoting Effect of Ce on the Performance of Au/CexZr1−xO2 for γ-Valerolactone Production from Biomass-Based Levulinic Acid and Formic Acid. Catalysts 2018, 8, 241. [Google Scholar] [CrossRef]
- Khalid, M.; Granollers Mesa, M.; Scapens, D.; Osatiashtiani, A. Advances in Sustainable γ-Valerolactone (GVL) Production via Catalytic Transfer Hydrogenation of Levulinic Acid and Its Esters. ACS Sustain. Chem. Eng. 2024, 12, 16494–16517. [Google Scholar] [CrossRef]
- Raspolli Galletti, A.M.; Licursi, D.; Ciorba, S.; Di Fidio, N.; Coccia, V.; Cotana, F.; Antonetti, C. Sustainable Exploitation of Residual Cynara cardunculus L. to Levulinic Acid and n-Butyl Levulinate. Catalysts 2021, 11, 1082. [Google Scholar] [CrossRef]
- Li, X.; Shi, X.-L.; Wang, J.; Shi, K.; Wang, Q. Effect of Different Hydrogen Donors on the Catalytic Conversion of Levulinic Acid to γ-Valerolactone over Non-Noble Metal Catalysts. J. Ind. Eng. Chem. 2024, 138, 17–33. [Google Scholar] [CrossRef]
- Hijazi, A.; Khalaf, N.; Kwapinski, W.; Leahy, J. Catalytic Valorisation of Biomass Levulinic Acid into Gamma Valerolactone Using Formic Acid as a H 2 Donor: A Critical Review. RSC Adv. 2022, 12, 13673–13694. [Google Scholar] [CrossRef] [PubMed]
- Valentini, F.; Kozell, V.; Petrucci, C.; Marrocchi, A.; Gu, Y.; Gelman, D.; Vaccaro, L. Formic Acid, a Biomass-Derived Source of Energy and Hydrogen for Biomass Upgrading. Energy Environ. Sci. 2019, 12, 2646–2664. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, H.; Han, A.; Wang, J.; Tan, H.R.; Tok, E.S.; Jaenicke, S.; Chuah, G.K. Ru/ZrO2 Catalysts for Transfer Hydrogenation of Levulinic Acid with Formic Acid/Formate Mixtures: Importance of Support Stability. ChemistrySelect 2018, 3, 1343–1351. [Google Scholar] [CrossRef]
- Ramos, R.; Abdelkader-Fernández, V.K.; Matos, R.; Peixoto, A.F.; Fernandes, D.M. Metal-Supported Biochar Catalysts for Sustainable Biorefinery, Electrocatalysis, and Energy Storage Applications: A Review. Catalysts 2022, 12, 207. [Google Scholar] [CrossRef]
- Phule, A.D.; Zaman, M.W.U.; Elkaee, S.; Kim, S.Y.; Lee, S.G.; Park, G.; Yang, J.H. Carbon-Based Catalysts for Clean Environmental Remediation. Int. J. Environ. Res. 2023, 18, 3. [Google Scholar] [CrossRef]
- Gholizadeh, M.; Meca, S.; Zhang, S.; Clarens, F.; Hu, X. Understanding the Dependence of Biochar Properties on Different Types of Biomass. Waste Manag. 2024, 182, 142–163. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Yan, W.; He, C.; Shi, Y. MgFe2O4-Biochar Based Lanthanum Alginate Beads for Advanced Phosphate Removal. Chem. Eng. J. 2020, 387, 123305. [Google Scholar] [CrossRef]
- Serrano-Ruiz, J.C.; Braden, D.J.; West, R.M.; Dumesic, J.A. Conversion of Cellulose to Hydrocarbon Fuels by Progressive Removal of Oxygen. Appl. Catal. B Environ. 2010, 100, 184–189. [Google Scholar] [CrossRef]
- Muñiz-Márquez, D.B.; Wong-Paz, J.E.; Contreras-Esquivel, J.C.; Rodriguez-Herrera, R.; Aguilar, C.N. Extraction of Phenolic Compounds From Coriandrum sativum L. and Amaranthus hybridus L. by Microwave Technology. Polyphen. Plants 2019, 185–190. [Google Scholar] [CrossRef]
- Baddour, F.G.; Snowden-Swan, L.; Super, J.D.; Van Allsburg, K.M. Estimating Precommercial Heterogeneous Catalyst Price: A Simple Step-Based Method. Org. Process Res. Dev. 2018, 22, 1599–1605. [Google Scholar] [CrossRef]
- Allsburg, K.M.V.; Tan, E.C.D.; Super, J.D.; Schaidle, J.A.; Baddour, F.G. Early-Stage Evaluation of Catalyst Manufacturing Cost and Environmental Impact Using CatCost. Nat. Catal. 2022, 5, 342–353. [Google Scholar] [CrossRef]
- Yu, C.; Wang, M.; Dong, X.; Shi, Z.; Zhang, X.; Lin, Q. Removal of Cu(II) from Aqueous Solution Using Fe3O4–Alginate Modified Biochar Microspheres. RSC Adv. 2017, 7, 53135–53144. [Google Scholar] [CrossRef]
- Du, Q.; Li, G.; Zhang, S.; Song, J.; zhao, Y.; Yang, F. High-Dispersion Zero-Valent Iron Particles Stabilized by Artificial Humic Acid for Lead Ion Removal. J. Hazard. Mater. 2020. [Google Scholar] [CrossRef] [PubMed]
- Noraini, M.N.; Abdullah, E.C.; Othman, R.; Mubarak, N.M. Single-Route Synthesis of Magnetic Biochar from Sugarcane Bagasse by Microwave-Assisted Pyrolysis. Mater. Lett. 2016, 184, 315–319. [Google Scholar] [CrossRef]
- Huang, J.; Yang, S.; Xu, Y.; Zhou, X.; Jiang, X.; Shi, N.; Cao, D.; Yin, J.; Wang, G. Fe2O3 Sheets Grown on Nickel Foam as Electrode Material for Electrochemical Capacitors. J. Electroanal. Chem. 2014, 713, 98–102. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Q.; Guo, Y.; Sun, X.; Li, T.; Yang, C. Spectroscopic Characterization of Dissolved Organic Matter from Macroalgae Ulva Pertusa Decomposition and Its Binding Behaviors with Cu(II). Ecotoxicol. Environ. Saf. 2021, 225, 112811. [Google Scholar] [CrossRef]
- Wu, J.; Zeng, R.J.; Zhang, F.; Yuan, Z. Application of Iron-Crosslinked Sodium Alginate for Efficient Sulfide Control and Reduction of Oilfield Produced Water. Water Res. 2019, 154, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Eslami, S.; Ebrahimzadeh, M.A.; Biparva, P. Green Synthesis of Safe Zero Valent Iron Nanoparticles by Myrtus Communis Leaf Extract as an Effective Agent for Reducing Excessive Iron in Iron-Overloaded Mice, a Thalassemia Model. RSC Adv. 2018, 8, 26144–26155. [Google Scholar] [CrossRef]
- Ruppert, A.M.; Jȩdrzejczyk, M.; Sneka-Płatek, O.; Keller, N.; Dumon, A.S.; Michel, C.; Sautet, P.; Grams, J. Ru Catalysts for Levulinic Acid Hydrogenation with Formic Acid as a Hydrogen Source. Green Chem. 2016, 18, 2014–2028. [Google Scholar] [CrossRef]
- Liang, H.; Zhu, C.; Ji, S.; Kannan, P.; Chen, F. Magnetic Fe2O3/Biochar Composite Prepared in a Molten Salt Medium for Antibiotic Removal in Water. Biochar 2022, 4, 3. [Google Scholar] [CrossRef]
- Macedo, J.C.A.; Gontijo, E.S.J.; Herrera, S.G.; Rangel, E.C.; Komatsu, D.; Landers, R.; Rosa, A.H. Organosulphur-Modified Biochar: An Effective Green Adsorbent for Removing Metal Species in Aquatic Systems. Surf. Interfaces 2021, 22, 100822. [Google Scholar] [CrossRef]
- Bardestani, R.; Biriaei, R.; Kaliaguine, S. Hydrogenation of Furfural to Furfuryl Alcohol over Ru Particles Supported on Mildly Oxidized Biochar. Catalysts 2020, 10, 934. [Google Scholar] [CrossRef]
- Morgan, D.J. Resolving Ruthenium: XPS Studies of Common Ruthenium Materials. Surf. Interface Anal. 2015, 47, 1072–1079. [Google Scholar] [CrossRef]
- Singh, B.K.; Kim, Y.; Kwon, S.; Na, K. Selective Catalytic Transfer Hydrogenolysis of Glycerol to 2-Isopropoxy-Propan-1-Ol over Noble Metal Ion-Exchanged Mordenite Zeolite. Catalysts 2019, 9, 885. [Google Scholar] [CrossRef]
- Chen, D.; Zheng, Z.; Zhang, F.; Ke, R.; Sun, N.; Wang, Y.; Wang, Y. Fe@Fe2O3-Loaded Biochar as an Efficient Heterogeneous Fenton Catalyst for Organic Pollutants Removal. Water Sci. Technol. 2022, 85, 2797–2810. [Google Scholar] [CrossRef]
- Li, P.; Jiang, E.Y.; Bai, H.L. Fabrication of Ultrathin Epitaxial γ-Fe2O3 Films by Reactive Sputtering. J. Phys. D Appl. Phys. 2011, 44, 075003. [Google Scholar] [CrossRef]
- Oladipo, A.A.; Ifebajo, A.O. Highly Efficient Magnetic Chicken Bone Biochar for Removal of Tetracycline and Fluorescent Dye from Wastewater: Two-Stage Adsorber Analysis. J. Environ. Manag. 2018, 209, 9–16. [Google Scholar] [CrossRef]
- Su, J.-Z.; Wang, C.-C.; Zhang, M.-Y.; Zong, X.-B.; Huang, X.-F.; Deng, Z.-H.; Xiang, P. Advances and Prospectives of Iron/Biochar Composites: Application, Influencing Factors and Characterization Methods. Ind. Crops Prod. 2023, 205, 117496. [Google Scholar] [CrossRef]
- Mihet, M.; Dan, M.; Barbu-Tudoran, L.; Lazar, M.D.; Blanita, G. Controllable H2 Generation by Formic Acid Decomposition on a Novel Pd/Templated Carbon Catalyst. Hydrogen 2020, 1, 22–37. [Google Scholar] [CrossRef]
- Yu, Z.; Lu, X.; Xiong, J.; Li, X.; Bai, H.; Ji, N. Heterogeneous Catalytic Hydrogenation of Levulinic Acid to γ-Valerolactone with Formic Acid as Internal Hydrogen Source. ChemSusChem 2020, 13, 2916–2930. [Google Scholar] [CrossRef]
- Chen, H.; Xu, Q.; Li, H.; Liu, J.; Liu, X.; Huang, G.; Yin, D. Catalytic Transfer Hydrogenation of Ethyl Levulinate to γ-Valerolactone over Ni Supported on Equilibrium Fluid-Catalytic-Cracking Catalysts. Catal. Lett. 2021, 151, 538–547. [Google Scholar] [CrossRef]
- Alabi, O.; Olanrewaju, A.A.; Afolabi, T.J. Process Optimization of Adsorption of Cr(VI) on Adsorbent Prepared from Bauhinia Rufescens Pod by Box-Behnken Design. Sep. Sci. Technol. 2019, 55, 47–60. [Google Scholar] [CrossRef]
- Elazazy, M.S.; Issa, A.A.; Al-Mashreky, M.; Al-Sulaiti, M.; Al-Saad, K. Application of Fractional Factorial Design for Green Synthesis of Cyano-Modified Silica Nanoparticles: Chemometrics and Multifarious Response Optimization. Adv. Powder Technol. 2018, 29, 1204–1215. [Google Scholar] [CrossRef]
- Rodríguez, V.I.; Mendow, G.; Sánchez, B.S.; García, J.R.; Pujro, R.A.; de Miguel, S.R.; Veizaga, N.S. Ruthenium Catalysts Supported on Hydrothermally Treated Carbon from Rice Husk: The Effect of Reduction Temperature on the Hydrogenation Reaction of Levulinic Acid to γ-Valerolactone. Processes 2023, 11, 1421. [Google Scholar] [CrossRef]
- Ibrahim, A.; Liu, X.; Uguna, C.N.; Sun, C. Selective Hydrogenation of Levulinic Acid to γ-Valerolactone over Copper Based Bimetallic Catalysts Derived from Metal-Organic Frameworks. Mater. Today Sustain. 2023, 23, 100424. [Google Scholar] [CrossRef]
- Jing, P.; Gan, T.; Qi, H.; Zheng, B.; Chu, X.; Yu, G.; Yan, W.; Zou, Y.; Zhang, W.; Liu, G. Synergism of Pt Nanoparticles and Iron Oxide Support for Chemoselective Hydrogenation of Nitroarenes under Mild Conditions. Chin. J. Catal. 2019, 40, 214–222. [Google Scholar] [CrossRef]
- Shi, H.; Lu, Z.; Xu, H.; Wang, S.; Nian, B.; Hu, Y. Selective and Efficient Synthesis of Pine Sterol Esters Catalyzed by Deep Eutectic Solvent. Molecules 2023, 28, 993. [Google Scholar] [CrossRef]
- Zhang, L.; Mao, J.; Li, S.; Yin, J.; Sun, X.; Guo, X.; Song, C.; Zhou, J. Hydrogenation of Levulinic Acid into Gamma-Valerolactone over in Situ Reduced CuAg Bimetallic Catalyst: Strategy and Mechanism of Preventing Cu Leaching. Appl. Catal. B Environ. 2018, 232, 1–10. [Google Scholar] [CrossRef]
- Kim, H.; Hong, H.J.; Jung, J.; Kim, S.H.; Yang, J.W. Degradation of Trichloroethylene (TCE) by Nanoscale Zero-Valent Iron (nZVI) Immobilized in Alginate Bead. J. Hazard. Mater. 2010, 176, 1038–1043. [Google Scholar] [CrossRef]
- Shao, Y.; Ba, S.; Sun, K.; Gao, G.; Fan, M.; Wang, J.; Fan, H.; Zhang, L.; Hu, X. Selective Production of γ-Valerolactone or 1,4-Pentanediol from Levulinic Acid/Esters over Co-Based Catalyst: Importance of the Synergy of Hydrogenation Sites and Acidic Sites. Chem. Eng. J. 2022, 429, 132433. [Google Scholar] [CrossRef]
- Fellay, C.; Yan, N.; Dyson, P.J.; Laurenczy, G. Selective Formic Acid Decomposition for High-Pressure Hydrogen Generation: A Mechanistic Study. Chem.—A Eur. J. 2009, 15, 3752–3760. [Google Scholar] [CrossRef] [PubMed]
- Wojciechowska, J.; Jędrzejczyk, M.; Grams, J.; Keller, N.; Ruppert, A.M. Enhanced Production of γ-Valerolactone with an Internal Source of Hydrogen on Ca-Modified TiO2 Supported Ru Catalysts. ChemSusChem 2019, 12, 639–650. [Google Scholar] [CrossRef] [PubMed]
- Khajone, V.B.; Raut, S.U.; Deshmukh, S.A.; Bhansali, K.J.; Balinge, K.R.; Muskawar, P.N.; Bhagat, P.R. Recyclable Polymer-Supported Carboxyl Functionalized Zn–Porphyrin Photocatalyst for Transfer Hydrogenation of Levulinic Acid to γ-Valerolactone. Biomass Convers. Biorefinery 2023, 13, 9107–9117. [Google Scholar] [CrossRef]
Catalyst | Yield GVL (%) | Leaching (wt%) | |
---|---|---|---|
Fe | Ru | ||
Fe500 | 3 | 4.61 | 0.000 |
BC500 | 0 | 0.06 | 0.000 |
BC500Ru | 4 | 0.04 | 0.00050 |
BC500Fe | 0 | 2.77 | 0.000 |
BC500Fe3%Ru (1° cycle) | 75 | 2.77 | 0.00026 |
BC500Fe3%Ru (2° cycles) | 71 | 1.58 | 0.00025 |
BC500Fe3%Ru (3° cycles) | 73 | 1.33 | 0.00018 |
BC500Fe3%Ru (4° cycle) | 63 | 1.84 | 0.00021 |
BC500Fe3%Ru (5° cycle) | 50 | 2.47 | 0.00032 |
Catalyst | LA/FA | Solvent | Catalyst Amount (g) | Metal Loading (%) | T (°C) | t (h) | GVL Yield (%) | TOF (h−1) | TON | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
BC500Fe/3%Ru | 1:2 | H2O | 0.5 | 3 | 180 | 3 | 73 | 3.94 | 11.83 | This work |
Ru/Ca-TiO2 (incipient wet impregnation method) | 1:1 | H2O | 0.6 | 5 | 190 | 5 | 30 | 2.84 | 14.2 | [52] |
Ru/Ca-TiO2 (photodeposition method) | 1:1 | H2O | 0.6 | 5 | 190 | 5 | 49 | 1.74 | 8.69 | |
Ru/C (commercial) | 1:2 | H2O | 0.2 | 5 | 160 | 3 | 8.96 | 6.04 | 18.11 | [5] |
Ru/C (low reduction temperature of 200 °C) | 1:5 | H2O | 0.6 | 5 | 190 | 5 | 31 | 1.8 | 8.99 | [29] |
Ru/C (high reduction temperature of 500 °C) | 1:5 | H2O | 0.6 | 5 | 190 | 5 | 45 | 2.61 | 13.04 | |
Ru/C (Cl) (low reduction temperature of 200 °C) | 1:5 | H2O | 0.6 | 5 | 190 | 5 | 46 | 2.67 | 13.33 | |
Ru/C (Cl) (high reduction temperature of 500 °C) | 1:5 | H2O | 0.6 | 5 | 190 | 5 | 57 | 3.31 | 16.53 | |
PSCFZnPP (12-W LED light) | 2-propanol 1:3 | - | 0.01 | - | - | 16 | 72 | - | - | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macedo, J.C.A.; Shirinkar, M.; Landers, R.; Rosa, A.H. Exploring Biomass Waste-Derived Biochar as a Catalyst for Levulinic Acid Conversion to γ-Valerolactone: Insights into Synthesis, Characterization, and Catalytic Performance. Biomass 2025, 5, 29. https://doi.org/10.3390/biomass5020029
Macedo JCA, Shirinkar M, Landers R, Rosa AH. Exploring Biomass Waste-Derived Biochar as a Catalyst for Levulinic Acid Conversion to γ-Valerolactone: Insights into Synthesis, Characterization, and Catalytic Performance. Biomass. 2025; 5(2):29. https://doi.org/10.3390/biomass5020029
Chicago/Turabian StyleMacedo, Joao Carlos Alves, Maryam Shirinkar, Richard Landers, and André Henrique Rosa. 2025. "Exploring Biomass Waste-Derived Biochar as a Catalyst for Levulinic Acid Conversion to γ-Valerolactone: Insights into Synthesis, Characterization, and Catalytic Performance" Biomass 5, no. 2: 29. https://doi.org/10.3390/biomass5020029
APA StyleMacedo, J. C. A., Shirinkar, M., Landers, R., & Rosa, A. H. (2025). Exploring Biomass Waste-Derived Biochar as a Catalyst for Levulinic Acid Conversion to γ-Valerolactone: Insights into Synthesis, Characterization, and Catalytic Performance. Biomass, 5(2), 29. https://doi.org/10.3390/biomass5020029