Impact of the Integration Level in Crop–Livestock Systems on Biomass Production, Nutrient Recycling, and Energy Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Farming Systems Description
Crops and Livestock Description
2.2. Soil and Cattle Manure Characterization
2.3. Circularity Assessment of the Farming Systems
2.3.1. Biomass Production
2.3.2. Energy Efficiency, Energy Distribution, and Workload
2.3.3. Nutrient Cycling
2.3.4. Percentage of Food Needs Covered by the Farming System
2.3.5. Protein Produced in the Farming System
3. Results
3.1. Soill and Cattle Manure Characterization
3.2. Biomass for Food and Feed
3.3. Energy Efficiency, Distribution, and Workload
3.4. Nutrient Use and Cycling
3.5. Food Needs Covered by Production
3.6. Protein Produced by Farming Systems
4. Discussion
4.1. Soil Properties
4.2. Biomass Production for Food and Feed
4.3. Energy and Workload
4.4. Nutrient Use and Cycling
4.5. Proportion of Food Needs Covered by the System
4.6. Protein Produced in the Farming Systems
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pretty, J. Intensification for Redesigned and Sustainable Agricultural Systems. Science 2018, 362, eaav0294. [Google Scholar] [CrossRef] [PubMed]
- Silvestri Szymczak, L.; de Faccio Carvalho, P.C.; Lurette, A.; de Moraes, A.; de Albuquerque Nunes, P.; Posselt, M.; Moulin, C.H. System Diversification and Grazing Management as Resilience-Enhancing Agricultural Practices: The Case of Crop-Livestock Integration. Agric. Syst. 2020, 184, 102904. [Google Scholar] [CrossRef]
- Basso, B.; Jones, J.W.; Antle, J.; Martinez-Feria, R.A.; Verma, B. Enabling Circularity in Grain Production Systems with Novel Technologies and Policy. Agric. Syst. 2021, 193, 103244. [Google Scholar]
- Koppelmäki, K.; Helenius, J.; Schulte, R.P.O. Nested Circularity in Food Systems: A Nordic Case Study on Connecting Biomass, Nutrient and Energy Flows from Field Scale to Continent. Resour. Conserv. Recycl. 2021, 164, 105218. [Google Scholar] [CrossRef]
- Koppelmäki, K.; Parviainen, T.; Virkkunen, E.; Winquist, E.; Schulte, R.P.O.; Helenius, J. Ecological Intensification by Integrating Biogas Production into Nutrient Cycling: Modeling the Case of Agroecological Symbiosis. Agric. Syst. 2019, 170, 39–48. [Google Scholar] [CrossRef]
- Paramesh, V.; Ravisankar, N.; Behera, U.K.; Arunachalam, V.; Kumar, P.; Solomon Rajkumar, R.; Dhar Misra, S.; Mohan Kumar, R.; Prusty, A.K.; Jacob, D.; et al. Integrated Farming System Approaches to Achieve Food and Nutritional Security for Enhancing Profitability, Employment, and Climate Resilience in India. Food Energy Secur. 2022, 11, e321. [Google Scholar] [CrossRef]
- St-Martin, A.; Vico, G.; Bergkvist, G.; Bommarco, R. Diverse Cropping Systems Enhanced Yield but Did Not Improve Yield Stability in a 52-Year Long Experiment. Agric. Ecosyst. Environ. 2017, 247, 337–342. [Google Scholar] [CrossRef]
- Hawes, C.; Alexander, C.J.; Begg, G.S.; Iannetta, P.P.M.; Karley, A.J.; Squire, G.R.; Young, M. Plant Responses to an Integrated Cropping System Designed to Maintain Yield Whilst Enhancing Soil Properties and Biodiversity. Agronomy 2018, 8, 229. [Google Scholar] [CrossRef]
- Roese, A.D.; Ribeiro Junior, P.J.; Porfírio-da-Silva, V.; De Mio, L.L.M. Sistema Agrosilvipastoril Aumenta Supressividade Ao Tombamento Da Soja Causado Por Rhizoctonia Solani e Altera a Densidade de Populações de Fusarium e Trichoderma. Acta Sci. Agron. 2018, 40, e35075. [Google Scholar] [CrossRef]
- Roese, A.D.; Vidal, G.S.; Zeviani, W.M.; de Moraes, A.; May De Mio, L.L. Agricultural Diversification Reduces the Survival Period of Sclerotinia Sclerotiorum Sclerotia. Eur. J. Plant Pathol. 2018, 151, 713–722. [Google Scholar] [CrossRef]
- De Camargo, T.A.; Luiz, L.G.; Pereira Pacheco, L.; Pires, G.C.; Gonçalves, E.C.; Jesus Franco, A.; Carbone Carneiro, M.A.; Souza, E.D. Plant Diversity and Cattle Grazing Affecting Soil and Crop Yield in Tropical Sandy Soils. Arch. Agron. Soil. Sci. 2023, 69, 2053–2064. [Google Scholar] [CrossRef]
- Dos Santos Laroca, J.; Mendes Andrade, S.; Castro, P.; Coutinho, P.; Pereira, P.; da Silva, F.; Wruck, F.; Carbone, C.; Santos, S.; Damacena, S. Soil Quality and Soybean Productivity in Crop-Livestock Integrated System in No-Tillage. Pesqui. Agropecu. Bras. 2018, 53, 1248–1258. [Google Scholar] [CrossRef]
- Martins, A.P.; Denardin, L.G.d.O.; Borin, J.B.M.; Carlos, F.S.; Barros, T.; Ozório, D.V.B.; Carmona, F.d.C.; Anghinoni, I.; Camargo, F.A.d.O.; Carvalho, P.C.d.F. Short-Term Impacts on Soil-Quality Assessment in Alternative Land Uses of Traditional Paddy Fields in Southern Brazil. Land Degrad. Dev. 2017, 28, 534–542. [Google Scholar] [CrossRef]
- Dos Reis, J.C.; Rodrigues, G.S.; de Barros, I.; Ribeiro Rodrigues, R.d.A.; Garrett, R.D.; Valentim, J.F.; Kamoi, M.Y.T.; Michetti, M.; Wruck, F.J.; Rodrigues-Filho, S.; et al. Integrated Crop-Livestock Systems: A Sustainable Land-Use Alternative for Food Production in the Brazilian Cerrado and Amazon. J. Clean. Prod. 2021, 283, 124580. [Google Scholar] [CrossRef]
- Belete, S.; Bezabih, M.; Abdulkadir, B.; Tolera, A.; Mekonnen, K.; Wolde-meskel, E. Inoculation and Phosphorus Fertilizer Improve Food-Feed Traits of Grain Legumes in Mixed Crop-Livestock Systems of Ethiopia. Agric. Ecosyst. Environ. 2019, 279, 58–64. [Google Scholar] [CrossRef]
- Duarte, G.; Batista, J.; Savian, J.; Pacheco, L.; Posselt, A.; Tiecher, T.; Aquino, L.; de Facio, P.; Bremm, C.; Carvalho, F.; et al. Integrated Crop-Livestock System with System Fertilization Approach Improves Food Production and Resource-Use Efficiency in Agricultural Lands. Agron. Sustain. Dev. 2020, 40, 39. [Google Scholar]
- Sousa, H.M.; Correa, A.R.; Silva, B.D.M.; Oliveira, S.D.S.; Campos, D.T.D.S.; Wruck, F.J. Dynamics of Soil Microbiological Attributes in Integrated Crop-Livestock Systems in the Cerrado-Amazononia Ecotone. Rev. Caatinga 2020, 33, 9–20. [Google Scholar] [CrossRef]
- Rangel, J.; Espinosa, J.A.; de Pablos-Heredero, C.; Rivas, J.; Perea, J.; Angón, E.; García-Martínez, A. Is the Increase of Scale in the Tropics a Pathway to Smallholders? Dimension and Ecological Zone Effect on the Mixed Crop-Livestock Farms. Span. J. Agric. Res. 2017, 15, e0109. [Google Scholar] [CrossRef]
- Villarroel-Schneider, J.; Höglund-Isaksson, L.; Mainali, B.; Martí-Herrero, J.; Cardozo, E.; Malmquist, A.; Martin, A. Energy Self-Sufficiency and Greenhouse Gas Emission Reductions in Latin American Dairy Farms through Massive Implementation of Biogas-Based Solutions. Energy Convers. Manag. 2022, 261, 115670. [Google Scholar] [CrossRef]
- Fanchone, A.; Alexandre, G.; Hostiou, N. Work Organization as a Barrier to Crop-Livestock Integration Practices: A Case Study in Guadeloupe. Agron. Sustain. Dev. 2022, 42, 54. [Google Scholar]
- Sraïri, M.T.; Naqach, Y. Comparing the Uses of Available Labor and Capital in Diversified Farming Systems in Drâa Oases (Morocco). New Medit. 2022, 2022, 21–34. [Google Scholar] [CrossRef]
- Hidayat, Z.; Suyatno; Priyanto, R.; Nuraini, H.; Abdullah, L. Suharyanto Nutritional Status and Smallholder Farmer Characteristic of Bali Cattle-Oil Palm Integration System in the Rural Dryland Area of Bangka Island, Indonesia. Pak. J. Agric. Sci. 2023, 60, 603–613. [Google Scholar] [CrossRef]
- Liu, L.; Zheng, H.; Liu, Z.; Ma, Y.Z.; Han, H.F.; Ning, T. Yuan Crop—Livestock Integration via Maize Straw Recycling Increased Carbon Sequestration and Crop Production in China. Agric. Syst. 2023, 210, 103722. [Google Scholar] [CrossRef]
- Menefee, D.S.; Collins, H.; Smith, D.; Haney, R.L.; Fay, P.; Polley, W. Cropping Management in a Livestock–Pasture–Crop Integration Modifies Microbial Communities, Activity, and Soil Health Score. J. Environ. Qual. 2023, 52, 434–447. [Google Scholar] [CrossRef]
- Perreti, B.D.; Ferreira, A.S.; Bonifacio, A.; De Araujo, F.F. Soil Microbial Biomass, Organic C, and Soybean Physiology in Integrated Crop–Livestock Systems with Different Inputs. Arch. Agron. Soil. Sci. 2022, 68, 971–983. [Google Scholar] [CrossRef]
- Soares, D.d.A.; Sekiya, B.M.S.; Modesto, V.C.; Nakao, A.H.; Freitas, L.A.; Souza, I.M.D.d.; da Luz, J.H.S.; Galindo, F.S.; Lupatini, G.C.; Pavan Mateus, G.; et al. Accumulated Carbon Fractions in Tropical Sandy Soils and Their Effects on Fertility and Grain Yield in an Integrated Crop–Livestock System. Sustainability 2023, 15, 13829. [Google Scholar] [CrossRef]
- Trevisan, R.G.; Freddi, O.d.S.; Wruck, F.J.; Tavanti, R.R.; Peres, F.S.C. Variabilidade de Atributos Físicos Do Solo e Do Arroz Cultivado Sob Plantas de Cobertura Em Sistema de Integração Lavoura-Pecuária. Bragantia 2017, 76, 145–154. [Google Scholar] [CrossRef]
- Gerssen-Gondelach, S.J.; Lauwerijssen, R.B.G.; Havlík, P.; Herrero, M.; Valin, H.; Faaij, A.P.C.; Wicke, B. Intensification Pathways for Beef and Dairy Cattle Production Systems: Impacts on GHG Emissions, Land Occupation and Land Use Change. Agric. Ecosyst. Environ. 2017, 240, 135–147. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, F.; Su, R.; Ma, D.; Liao, H.; Yang, X.; Gong, G. Livestock or Crop? Which Deserves More Investment to Reduce Greywater Footprint Emissions and Improve Water Use Efficiency? Environ. Dev. Sustain. 2024, 26, 7409–7435. [Google Scholar] [CrossRef]
- Dos Reis, J.C.; Kamoi, M.Y.T.; Latorraca, D.; Chen, R.F.F.; Michetti, M.; Wruck, F.J.; Garrett, R.D.; Valentim, J.F.; Rodrigues, R.D.A.R.; Rodrigues-Filho, S. Assessing the Economic Viability of Integrated Crop-Livestock Systems in Mato Grosso, Brazil. Renew. Agric. Food Syst. 2020, 35, 631–642. [Google Scholar] [CrossRef]
- Da Silva, F.S.; Domiciano, L.F.; Gomes, F.J.; Sollenberger, L.E.; Pedreira, C.G.S.; Pereira, D.H.; Pedreira, B.C. Herbage Accumulation, Nutritive Value and Beef Cattle Production on Marandu Palisadegrass Pastures in Integrated Systems. Agrofor. Syst. 2020, 94, 1891–1902. [Google Scholar] [CrossRef]
- Moreira, S.G.; Hoogenboom, G.; Nunes, M.R.; Sanchez, P.A. Circular Agriculture Practices Enhance Phosphorus Recovery for Large-Scale Commercial Farms under Tropical Conditions. J. Agric. Sci. 2023, 161, 763–777. [Google Scholar] [CrossRef]
- Moreira, S.G.; Hoogenboom, G.; Nunes, M.R.; Martin-Ryals, A.D.; Sanchez, P.A. Circular Agriculture Increases Food Production and Can Reduce N Fertilizer Use of Commercial Farms for Tropical Environments. Sci. Total Environ. 2023, 879, 163031. [Google Scholar] [CrossRef] [PubMed]
- Hercher-Pasteur, J.; Loiseau, E.; Sinfort, C.; Hélias, A. Identifying the Resource Use and Circularity in Farm Systems: Focus on the Energy Analysis of Agroecosystems. Resour. Conserv. Recycl. 2021, 169, 105502. [Google Scholar] [CrossRef]
- Dominguez-Hernandez, M.E.; Zepeda-Bautista, R.; Valderrama-Bravo, M.C.; Dominguez-Hernandez, E.; Hernandez-Aguilar, C. Sustainability Assessment of Traditional Maize (Zea mays L.) Agroecosystem in Sierra Norte of Puebla, Mexico. Agroecol. Sustain. Food Syst. 2018, 42, 383–406. [Google Scholar] [CrossRef]
- Dominguez-Hernandez, M.E.; Zepeda-Bautista, R.; Dominguez-Hernandez, E.; Valderrama-Bravo, M.C.; Hernández-Simón, L.M. Effect of Lime Water–Manure Organic Fertilizers on the Productivity, Energy Efficiency and Profitability of Rainfed Maize Production. Arch. Agron. Soil. Sci. 2020, 66, 1616287. [Google Scholar] [CrossRef]
- Dominguez-Hernandez, A.; Dominguez-Hernandez, M.E.; Dominguez-Hernandez, E.; Zepeda-Bautista, R. Comparing the Sustainability and Circularity of Two Livestock Production Systems in the Sierra Norte of Puebla, Mexico. Biol. Life Sci. Forum 2023, 27, 3. [Google Scholar] [CrossRef]
- Tan, K. Soil Sampling, Preparation, and Analysis, 2nd ed.; CRC-Press: Boca Raton, FL, USA, 2005; pp. 175–188. ISBN 0-8493-3499. [Google Scholar]
- Schulte, E.E.; Hopkins, B.G. Estimation of Soil Organic Matter by Weight Loss-On-Ignition. In Soil Organic Matter: Analysis and Interpretation; Soil Science Society of America: Madison, WI, USA, 1996; Volume 46, pp. 21–31. [Google Scholar] [CrossRef]
- INECC. Factores de Emisión Para Los Diferentes Tipos de Combustibles Fósiles y Alternativos Que Se Consumen En México; Instituto Nacional de Ecología y Cambio Climático: Ciudad de México, México, 2014; pp. 12–15. [Google Scholar]
- Gliessman, S.R. Agroecology: Ecological Processes in Sustainable Agriculture; Ann Harbor Press: Chelsea, MI, USA, 1998; 347p. [Google Scholar]
- Banaeian, N.; Zangeneh, M. Study on Energy Efficiency in Corn Production of Iran. Energy 2011, 36, 5394–5402. [Google Scholar] [CrossRef]
- Feedipedia Feedipedia. Animal Feed Resources Information System. Available online: https://www.feedipedia.org/ (accessed on 2 January 2025).
- Pérez, N.D.; Soler, M.; Simón, F. Energy Indicators for Organic Livestock Production: A Case Study from Andalusia, Southern Spain. Agroecol. Sustain. Food Syst. 2014, 38, 317–335. [Google Scholar] [CrossRef]
- Servicio de Información Agroalimentaria y Pesquera. Panorama Agroalimentario 2024; Servicio de Información Agroalimentaria y Pesquera (SIAP)-Secretaría de Agricultura y Desarrollo Rural: Ciudad de México, México, 2024; 207p. [Google Scholar]
- Consejo Mexicano de la Carne. Compendio Estadístico 2024; Consejo Mexicano de la Carne: Ciudad de México, México, 2024; 169p. [Google Scholar]
- Hughes, H.D.; Heath, M.E.; Metcalfe, D.S. Forrajes: La Ciencia de La Agricultura Basada En La Producción de Pastos; 2a. Compañía Editorial Continental S.A.: Ciudad de México, México, 1966. [Google Scholar]
- USDA. FoodData Central Food Details. Available online: https://fdc.nal.usda.gov/food-details/174032/nutrients (accessed on 18 December 2024).
- FAO. Milk Composition. Available online: https://www.fao.org/dairy-production-products/products/milk-composition/en (accessed on 18 October 2024).
- Parmar, P.; Lopez-Villalobos, N.; Tobin, J.T.; Murphy, E.; McDonagh, A.; Crowley, S.V.; Kelly, A.L.; Shalloo, L. The Effect of Compositional Changes Due to Seasonal Variation on Milk Density and the Determination of Season-Based Density Conversion Factors for Use in the Dairy Industry. Foods 2020, 9, 1004. [Google Scholar] [CrossRef]
- Mattei, E.; de Oliveira, P.S.R.; Rampim, L.; Egewarth, J.F.; Rego, C.A.R.d.M.; Piano, J.T.; de Herrera, J.L. Remaining Straw and Release of Nutrients from Oat Managed in Integrated Crop-Livestock. Biosci. J. 2018, 34, 206–215. [Google Scholar] [CrossRef]
- Dias, M.B.D.C.; Costa, K.A.D.P.; Bilego, U.O.; Costa, J.V.C.P.; Bezerra Fernandes, P. Protein and Carbohydrate Fractionation of Urochloa Spp. and Megathyrsus Maximus Forages after Intercropping with Soybean in an Integrated Crop-Livestock System. N. Z. J. Agric. Res. 2023, 68, 116–129. [Google Scholar] [CrossRef]
- Abdul-Salam, Y.; Hawes, C.; Roberts, D.; Young, M. The Economics of Alternative Crop Production Systems in the Context of Farmer Participation in Carbon Trading Markets. Agroecol. Sustain. Food Syst. 2019, 43, 67–91. [Google Scholar] [CrossRef]
- Almeida, C.M.V.B.; Frugoli, A.D.; Agostinho, F.; Liu, G.Y.; Giannetti, B.F. Integrating or Des-Integrating Agribusiness Systems: Outcomes of Emergy Evaluation. Sci. Total Environ. 2020, 729, 138733. [Google Scholar] [CrossRef]
- Rodríguez-Ortega, T.; Bernués, A.; Olaizola, A.M.; Brown, M.T. Does Intensification Result in Higher Efficiency and Sustainability? An Emergy Analysis of Mediterranean Sheep-Crop Farming Systems. J. Clean. Prod. 2017, 144, 171–179. [Google Scholar] [CrossRef]
- Fernandes, P.B.; Paim, T.d.P.; Santos, L.P.d.; Souza, B.R.; Leal, V.N.; Gonçalves, L.F.; Claudio, F.L.; Santos, D.d.C.; Guimarães, K.C.; Alves, E.M. Optimal Time for Haymaking and Potential Production of Grass Hay on Soybean Overseeding in Brazilian Savanna. Agronomy 2023, 13, 3046. [Google Scholar] [CrossRef]
- Freitas, C.M.; Yasuoka, J.I.; Pires, G.C.; Gama, J.P.; Oliveira, L.G.S.; Davi, J.E.A.; Silva, L.S.; Silva, I.A.G.; Bremm, C.; Carvalho, P.C.F.; et al. System Fertilization in the Pasture Phase Enhances Productivity in Integrated Crop-Livestock Systems. J. Agric. Sci. 2023, 161, 755–762. [Google Scholar] [CrossRef]
- Bertogna, K.F.; Moreira, P.S.A.; Gomes, F.J.; Kachiyama, F.B.; Groth, A.; Rezende, M.O.; de Souza Magalhães, C.A.; Lopes, L.B. Parameters Associated with Sexual Precocity of Nellore Heifers in Integrated Systems. Agrofor. Syst. 2022, 96, 669–679. [Google Scholar] [CrossRef]
- Pariz, C.M.; Costa, C.; Crusciol, C.A.C.; Castilhos, A.M.; Meirelles, P.R.L.; Roça, R.O.; Pinheiro, R.S.B.; Kuwahara, F.A.; Martello, J.M.; Cavasano, F.A.; et al. Lamb Production Responses to Grass Grazing in a Companion Crop System with Corn Silage and Oversowing of Yellow Oat in a Tropical Region. Agric. Syst. 2017, 151, 1–11. [Google Scholar] [CrossRef]
- Reddy, K.V.; Paramesh, V.; Arunachalam, V.; Das, B.; Ramasundaram, P.; Pramanik, M.; Sridhara, S.; Reddy, D.D.; Alataway, A.; Dewidar, A.Z.; et al. Farmers’ Perception and Efficacy of Adaptation Decisions to Climate Change. Agronomy 2022, 12, 1023. [Google Scholar] [CrossRef]
- Taifouris, M.; Martin, M. Toward a Circular Economy Approach for Integrated Intensive Livestock and Cropping Systems. ACS Sustain. Chem. Eng. 2021, 9, 13471–13479. [Google Scholar] [CrossRef]
- Arnuti, F.; Luiz, L.G.; Pedro, P.A.; Alves, L.A.; Cecagno, D.; De Assis, J.; Schaidhauer, W.D.S.; Anghinoni, I.; Chabbi, A.; Paulo, P.C. Sheep Dung Composition and Phosphorus and Potassium Release Affected by Grazing Intensity and Pasture Development Stage in an Integrated Cr Op-Livestock System. Agronomy 2020, 10, 1162. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Z.; Accatino, F.; Hang, S.; Lv, Y.; Ouyang, Z. Comparing Specialised Crop and Integrated Crop-Livestock Systems in China with a Multi-Criteria Approach Using the Emergy Method. J. Clean. Prod. 2021, 314, 127974. [Google Scholar] [CrossRef]
- Patrizi, N.; Niccolucci, V.; Castellini, C.; Pulselli, F.M.; Bastianoni, S. Sustainability of Agro-Livestock Integration: Implications and Results of Emergy Evaluation. Sci. Total Environ. 2018, 622–623, 1543–1552. [Google Scholar] [CrossRef]
- Golshani, F.; Asgharipour, M.R.; Ghanbari, A.; Seyedabadi, E. Environmental Accounting for Croplands, Livestock Husbandry, and Integrated Systems Based on Emergetic Indicators. Energy Ecol. Environ. 2023, 8, 28–49. [Google Scholar] [CrossRef]
- Pontes, L.d.S.; Stafin, G.; Moletta, J.L.; Porfírio-da-Silva, V. Performance of Purunã Beef Heifers and Pasture Productivity in a Long-Term Integrated Crop-Livestock System: The Effect of Trees and Nitrogen Fertilization. Agrofor. Syst. 2020, 94, 1713–1723. [Google Scholar] [CrossRef]
- Costa, N.R.; Crusciol, C.A.C.; Trivelin, P.C.O.; Pariz, C.M.; Costa, C.; Castilhos, A.M.; Souza, D.M.; Bossolani, J.W.; Andreotti, M.; Meirelles, P.R.L.; et al. Recovery of 15N Fertilizer in Intercropped Maize, Grass and Legume and Residual Effect in Black Oat under Tropical Conditions. Agric. Ecosyst. Environ. 2021, 310, 107226. [Google Scholar] [CrossRef]
- Duan, Y.; Xu, M.; Gao, S.; Yang, X.; Huang, S.; Liu, H.; Wang, B. Nitrogen Use Efficiency in a Wheat-Corn Cropping System from 15 Years of Manure and Fertilizer Applications; Elsevier B.V.: Amsterdam, The Netherlands, 2014; Volume 157, ISBN 0378-4290. [Google Scholar] [CrossRef]
- Hellin, J.; Erenstein, O.; Beuchelt, T.; Camacho, C.; Flores, D. Maize Stover Use and Sustainable Crop Production in Mixed Crop-Livestock Systems in Mexico. Field Crops Res. 2013, 153, 12–21. [Google Scholar] [CrossRef]
- FAO. El Sistema Alimentario En México—Oportunidades Para El Campo Mexicano En La Agenda 2023 de Desarrollo Sostenible; Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO): Ciudad de México, Mexico, 2019; ISBN 9789251312292. [Google Scholar]
- de Moura, E.G.; Mooney, S.J.; Campos, L.S.; Bastos, K.D.O.; Aguiar, A.C.F.; Jewitt, S. No-till Alley Cropping Using Leguminous Trees Biomass: A Farmer- and Eco-Friendly Sustainable Alternative to Shifting Cultivation in the Amazonian Periphery? Environ. Dev. Sustain. 2022, 24, 7195–7212. [Google Scholar] [CrossRef]
Farming System (Treatment) | Level of Integration | Crop Sequence | Livestock |
---|---|---|---|
MM | Low | Maize monoculture | Confined and fed with maize byproducts |
MRP | Medium-High | Maize—Red Clover—Mixed Prairie | Rotationally grazed |
MCP | Medium High | Maize—Cover Crop—Mixed Prairie | Rotationally grazed |
Item | Unit | Energy Equivalents (MJ Unit−1) | Reference |
---|---|---|---|
Inputs | |||
Fuel (Diesel) | L | 36 | [40] |
Fuel (Gasoline) | L | 32.2 | [40] |
Electricity | Day | 0.00036 | Directly measured |
Vigorous human labor | h | 1.67 | [41] |
Light human labor | h | 0.73 | [41] |
Manure * | kg | 0.3 | [42] |
Maize seed | kg | 18.7 | [43] |
Red clover seed | kg | 18.4 | |
Barley seed | kg | 18.6 | |
Common vetch seed | kg | 18.6 | |
Hairy vetch seed | kg | 18.6 | |
Rape seed | kg | 28 | |
Ryegrass seed | kg | 18 | |
Machinery | h | 62.7 | [42] |
Outputs | |||
Maize grain * | kg | 18.7 | [43] |
Maize stover * | kg | 18.2 | |
Milk | kg | 2.8 | [44] |
Meat | kg | 10.6 | |
Mixed prairie forage * 1 | kg | 18.3 | [43] |
Cover crop forage * 1 | kg | 17.8 | |
Red clover forage * | kg | 18.4 | |
Manure * | kg | 0.3 | [42] |
Farming System (Treatment) | Bulk Density g cm−3 | Nitrogen kg ha−1 | Phosphorus kg ha−1 | Potassium kg ha−1 | Organic Matter % |
---|---|---|---|---|---|
Initial | |||||
MM | 1.09 a | 24.8 b | 168.9 a | 443.2 a | 3.7 a |
MRP | 1.07 a | 36.6 a | 206.6 a | 255.4 a | 3.4 a |
MCP | 1.03 a | 19.0 b | 122.2 a | 219.9 a | 4.7 a |
p value | 0.246 | 0.008 | 0.080 | 0.075 | 0.174 |
Final | |||||
MM | 1.17 a | 28.2 a | 166.1 a | 240.9 a | 1.3 b |
MRP | 1.16 a | 28.9 a | 188.1 a | 190.8 a | 3.9 a |
MCP | 1.07 a | 36.4 a | 189.2 a | 203.2 a | 3.9 a |
p value | 0.114 | 0.606 | 0.929 | 0.481 | 0.028 |
Item | MM | MRP | MCP |
---|---|---|---|
MJ Consumed | |||
Fuel (Diesel) NR, E | 2998.8 | 3498.6 | 3498.6 |
Fuel (Gasoline) NR, E | 2778.3 | 2778.3 | 2778.3 |
Electricity NR, E | 0 | 0.097 | 0.097 |
Vigorous human labor R, I | 213.8 | 106.9 | 106.9 |
Light human labor R, I | 234.3 | 479.2 | 425.6 |
Machinery NR, E | 2006.4 | 1755.6 | 1755.6 |
Manure R, I | 1215 | 1215 | 1215 |
Maize seed R, I | 935 | 467.5 | 467.5 |
Red clover seed R, E | 0 | 147.2 | 46 |
Barley seed R, E | 0 | 0 | 558 |
Common vetch seed R, E | 0 | 0 | 232.5 |
Hairy vetch seed R, E | 0 | 0 | 46.5 |
Rape seed R, E | 0 | 0 | 70 |
Ryegrass seed R, E | 0 | 180 | 180 |
Indicator | Farming System | |||
---|---|---|---|---|
MM | MRP | MCP | ||
Nitrogen Use Efficiency (NUE, kg/kg) | 1.3 b | 5.2 b | 6.9 a | |
Exported nitrogen (EN, kg) | 75.5 b | 128.1 a | 107.1 ab | |
Protein yield (kg protein ha−1) | Maize grain | 399.0 a | 397.3 a | 312.5 a |
Forage | 486.1 c | 3287.4 b | 4271.8 a | |
Milk | 56.7 b | 311.1 a | 282.8 a | |
Meat | 17.0 c | 98.4 a | 78.9 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domínguez-Hernández, A.; Juárez-Velázquez, A.; Domínguez-Hernández, E.; Zepeda-Bautista, R.; Hernández-Aguilar, C.; Domínguez-Hernández, M. Impact of the Integration Level in Crop–Livestock Systems on Biomass Production, Nutrient Recycling, and Energy Efficiency. Biomass 2025, 5, 19. https://doi.org/10.3390/biomass5020019
Domínguez-Hernández A, Juárez-Velázquez A, Domínguez-Hernández E, Zepeda-Bautista R, Hernández-Aguilar C, Domínguez-Hernández M. Impact of the Integration Level in Crop–Livestock Systems on Biomass Production, Nutrient Recycling, and Energy Efficiency. Biomass. 2025; 5(2):19. https://doi.org/10.3390/biomass5020019
Chicago/Turabian StyleDomínguez-Hernández, Arnulfo, Alejandra Juárez-Velázquez, Elisa Domínguez-Hernández, Rosalba Zepeda-Bautista, Claudia Hernández-Aguilar, and Martha Domínguez-Hernández. 2025. "Impact of the Integration Level in Crop–Livestock Systems on Biomass Production, Nutrient Recycling, and Energy Efficiency" Biomass 5, no. 2: 19. https://doi.org/10.3390/biomass5020019
APA StyleDomínguez-Hernández, A., Juárez-Velázquez, A., Domínguez-Hernández, E., Zepeda-Bautista, R., Hernández-Aguilar, C., & Domínguez-Hernández, M. (2025). Impact of the Integration Level in Crop–Livestock Systems on Biomass Production, Nutrient Recycling, and Energy Efficiency. Biomass, 5(2), 19. https://doi.org/10.3390/biomass5020019