Next Issue
Volume 3, December
Previous Issue
Volume 3, June
 
 

Thermo, Volume 3, Issue 3 (September 2023) – 9 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
21 pages, 5915 KiB  
Article
Impacts of Charge Air Parameters on Combustion and Emission Characteristics of a Diesel Marine Engine
by Duy Trinh Nguyen, Minh Thai Vu, Van Vang Le and Van Chien Pham
Thermo 2023, 3(3), 494-514; https://doi.org/10.3390/thermo3030030 - 19 Sep 2023
Cited by 1 | Viewed by 1621
Abstract
In this study, the operating processes of a four-stroke diesel marine engine from the intake valve closing (IVC) to the exhaust valve opening (EVO) at numerous different charge air conditions were simulated with the AVL FIRE code. The CFD models were validated with [...] Read more.
In this study, the operating processes of a four-stroke diesel marine engine from the intake valve closing (IVC) to the exhaust valve opening (EVO) at numerous different charge air conditions were simulated with the AVL FIRE code. The CFD models were validated with engine shop-test technical data. The results showed that increasing the charge air pressure without cooling decreased the actual amount of air supplied to the cylinder. As a result, the combustion process was suboptimal, resulting in a reduction in engine power and an increase in specific fuel oil consumption (SFOC). In addition, less air to cool the combustion chamber coupled with elevated charge air temperatures increased the in-cylinder peak temperature, leading to a significant increase in thermal nitric oxide (NO) emissions. In contrast, by cooling the charge air after turbocharging, the actual amount of air entering the engine cylinders was increased. The abundant charge air helped to cool the combustion chamber better, significantly reducing the in-cylinder peak temperature and then the thermal NO formation. Better combustion also increased engine power, which, in turn, reduced SFOC. In addition, carbon dioxide (CO2) and soot emissions were also reduced. Full article
Show Figures

Figure 1

11 pages, 2562 KiB  
Article
Thermal and Spectral Characterization of a Binary Mixture of Medazepam and Citric Acid: Eutectic Reaction and Solubility Studies
by Cristina Macasoi, Viorica Meltzer and Elena Pincu
Thermo 2023, 3(3), 483-493; https://doi.org/10.3390/thermo3030029 - 14 Sep 2023
Viewed by 736
Abstract
Medazepam, citric acid and their binary mixtures were studied using differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) for thermal and structural properties. The DSC data show a simple eutectic peak at 370 K. To determine the exact mole fraction at [...] Read more.
Medazepam, citric acid and their binary mixtures were studied using differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) for thermal and structural properties. The DSC data show a simple eutectic peak at 370 K. To determine the exact mole fraction at which the eutectic occurs, Tamman’s triangle was used. The obtained results show that the eutectic mixture appears at a molar fraction of medazepam of approximately 0.85. The excess thermodynamic functions GE, SE and μE were calculated, and the results were interpreted to evaluate the interactions that occur between the components of the mixture. The FTIR results were used to confirm the eutectic formation. Solubility tests in deionized water show a 40-times increase in the medazepam solubility from the eutectic mixture, from 0.73 μg/mL to 28.61 μg/mL. However, further tests showed that the acidic character of the sample was the main factor responsible for this increase. Full article
(This article belongs to the Special Issue Feature Papers of Thermo in 2023)
Show Figures

Figure 1

31 pages, 7132 KiB  
Article
Numerical Evaluation of the Benefits Provided by the Ground Thermal Inertia to Urban Greenhouses
by Florian Maranghi and Jasmin Raymond
Thermo 2023, 3(3), 452-482; https://doi.org/10.3390/thermo3030028 - 21 Aug 2023
Cited by 1 | Viewed by 1112
Abstract
Communities operating urban greenhouses need affordable solutions to reduce their heating consumption. The objective of this study was to compare the ability of different simple ground-based solutions to reduce the heating energy consumption of relatively small urban greenhouses operated all year round in [...] Read more.
Communities operating urban greenhouses need affordable solutions to reduce their heating consumption. The objective of this study was to compare the ability of different simple ground-based solutions to reduce the heating energy consumption of relatively small urban greenhouses operated all year round in a cold climate. An urban greenhouse located in Montreal (Canada) and its thermal interactions with the ground were modeled with the TRNSYS 18 software. The following greenhouse scenarios were simulated: partially insulating the walls, partially burying the greenhouse below the ground level, reducing the inside setpoint temperature, and using an air–soil heat exchanger (ASHE) or a ground-coupled heat pump (GCHP). The heat exchangers for the last two cases were assumed to be located underneath the greenhouse to minimize footprint. The results showed that reducing the setpoint temperature by 10 °C and burying the greenhouse 2 m below the surface has the most impact on fuel consumption (−33% to −53%), while geothermal systems with a limited footprint (ASHE and GCHP) can reduce the fuel consumption by 21–35% and 18–27%, respectively, depending on the soil thermal conductivity and ground heat injection during summer. The scenarios do not provide the same benefits and have different implications on solar radiation availability, growth temperature, electrical consumption, and operation that must be considered when selecting a proper solution. Full article
(This article belongs to the Special Issue Feature Papers of Thermo in 2023)
Show Figures

Figure 1

9 pages, 448 KiB  
Article
Abraham Model Solute Descriptors for Favipiravir: Case of Tautomeric Equilibrium and Intramolecular Hydrogen-Bond Formation
by Emily Yao and William E. Acree, Jr.
Thermo 2023, 3(3), 443-451; https://doi.org/10.3390/thermo3030027 - 10 Aug 2023
Cited by 3 | Viewed by 959
Abstract
Experiment-based Abraham model solute descriptors are calculated based on recently published solubility data for favipiravir dissolved in 12 chemically diverse organic mono-solvents. The calculated descriptor values indicate that favipiravir engages in intramolecular hydrogen formation that renders the hydroxyl functional group on the pyrazine [...] Read more.
Experiment-based Abraham model solute descriptors are calculated based on recently published solubility data for favipiravir dissolved in 12 chemically diverse organic mono-solvents. The calculated descriptor values indicate that favipiravir engages in intramolecular hydrogen formation that renders the hydroxyl functional group on the pyrazine ring system unable to form intermolecular hydrogen bonds with the surrounding solvent molecules. Our study further shows that the existing group contribution and machine learning methods provide rather poor estimates of the experiment-based solute descriptors of favipiravir. Poor estimation likely occurs, in part, because the methods fail to account for the intramolecular hydrogen-bonds that are believed to be formed. In the current study, it was found that the solute descriptors estimated using three different methods provided rather poor estimates of the observed solubility behavior of favipiravir, with the overall average standard errors between the experimental and predicted molar solubilities exceeding 0.40 log units. Full article
Show Figures

Figure 1

19 pages, 7229 KiB  
Article
Assessment of Semi-Empirical Soot Modelling in Turbulent Buoyant Pool Fires from Various Fuels
by Lahna Acherar, Hui-Ying Wang, Bruno Coudour and Jean Pierre Garo
Thermo 2023, 3(3), 424-442; https://doi.org/10.3390/thermo3030026 - 7 Aug 2023
Cited by 1 | Viewed by 784
Abstract
The objective of this work is to assess the accuracy and limitations of two different semi-empirical soot models: the Laminar Smoke Point (LSP) and soot-yield approach. A global soot formation model based on the LSP concept is embedded within FDS6.7. Quantitative comparisons were [...] Read more.
The objective of this work is to assess the accuracy and limitations of two different semi-empirical soot models: the Laminar Smoke Point (LSP) and soot-yield approach. A global soot formation model based on the LSP concept is embedded within FDS6.7. Quantitative comparisons were made from turbulent buoyant pool fires between several computational results and well-instrumented experimental databases on the soot volume fraction, mass loss rate, heat release rate and gas temperature. The LSP model in combination with soot oxidation and surface growth is validated for most of the methane, ethylene and heptane turbulent buoyant pool fires, covering a wide range of fuel likely to form soot. This paper aims to broaden the scope of the validation of the available semi-empirical soot modelling. For the porous methane and ethylene burner, the LSP model was found to provide a better description of the soot volume fraction. The overall visual soot distribution is also numerically reproduced with the soot-yield approach, but as expected, there are some differences between the prediction and the measurement regarding the magnitude of soot volume fraction. The computed radiant heat flux was compared with experimental data for heptane flame, showing that predictions using both the LSP and soot-yield models were found to be twice the value of experimental data, although the measured HRR (Heat Release Rate) is reliably reproduced in the numerical simulation. For the heptane buoyant pool fires, a sufficient accuracy of the numerical model is confirmed only in some of the locations as compared to the experimental results. It is demonstrated that neither the temperature nor the soot volume fraction can be reliably calculated in the necking flame flapping region when the pyrolysis rate of condensed fuel (heptane) is coupled with radiation/convection heat feedback. This implies that an accuracy of prediction on the turbulent buoyant pool fires depends on the studied fire scenario regardless of the semi-empirical soot models. Full article
(This article belongs to the Topic Heat Transfer Enhancement and Applications)
Show Figures

Figure 1

12 pages, 1255 KiB  
Article
Revisiting the Clausius/Clapeyron Equation and the Cause of Linearity
by Jason E. Thompson and Andrew S. Paluch
Thermo 2023, 3(3), 412-423; https://doi.org/10.3390/thermo3030025 - 17 Jul 2023
Viewed by 2091
Abstract
In general, for an organic compound a plot of the log vapor pressure versus inverse temperature is linear over a wide temperature range. This however can lead to a point of confusion in an undergraduate thermodynamics course. This linear behavior is typically explained [...] Read more.
In general, for an organic compound a plot of the log vapor pressure versus inverse temperature is linear over a wide temperature range. This however can lead to a point of confusion in an undergraduate thermodynamics course. This linear behavior is typically explained using the Clausius/Clapeyron equation. That is, starting with the Clapeyron equation one first assumes (1) that the change in compressibility upon vaporization is approximately 1, or equivalently that the vapor phase may be treated as an ideal gas where the molar volume of the vapor is much greater than that of the liquid, which may be assumed negligible. And second (2), that the enthalpy of vaporization is constant. While the resulting linear behavior is captured, the underlying assumptions are not applicable over the wide range of temperatures of interest. Here we discuss the shortcomings of the conventional explanation of the Clausius/Clapeyron equation. We further demonstrate that a simple solution is to instead assume that the enthalpy of vaporization relative to the change in compressibility upon vaporization is constant. We provide a series of examples and MATLAB code that can be used in an undergraduate thermodynamics course. Full article
(This article belongs to the Special Issue Annual Thermodynamics Education Issue: Methods & Results)
Show Figures

Figure 1

16 pages, 2021 KiB  
Review
Pumped Thermal Energy Storage Technology (PTES): Review
by Ayah Marwan Rabi, Jovana Radulovic and James M. Buick
Thermo 2023, 3(3), 396-411; https://doi.org/10.3390/thermo3030024 - 11 Jul 2023
Cited by 6 | Viewed by 2815
Abstract
In recent years, there has been an increase in the use of renewable energy resources, which has led to the need for large-scale Energy Storage units in the electric grid. Currently, Compressed Air Energy Storage (CAES) and Pumped Hydro Storage (PHES) are the [...] Read more.
In recent years, there has been an increase in the use of renewable energy resources, which has led to the need for large-scale Energy Storage units in the electric grid. Currently, Compressed Air Energy Storage (CAES) and Pumped Hydro Storage (PHES) are the main commercially available large-scale energy storage technologies. However, these technologies are restricted geographically and can require fossil fuel streams to heat the air. Thus, there is a need to develop novel large-scale energy storage technologies that do not suffer from the abovementioned drawbacks. Among the in-development, large-scale Energy Storage Technologies, Pumped Thermal Electricity Storage (PTES), or Pumped Heat Energy Storage, stands out as the most promising due to its long cycle life, lack of geographical limitations, the absence of fossil fuel streams, and the possibility of integrating it with conventional fossil-fuel power plants. There have been a number of PTES systems proposed using different thermodynamic cycles, including the Brayton cycle, the Rankine cycle, and the transcritical Rankine cycle. The purpose of this paper is to provide a comprehensive overview of PTES concepts, as well as the common thermodynamic cycles they implement, indicating their individual strengths and weaknesses. Furthermore, the paper provides a comprehensive reference for planning and integrating various types of PTES into energy systems. Full article
(This article belongs to the Special Issue Feature Papers of Thermo in 2023)
Show Figures

Figure 1

21 pages, 3122 KiB  
Review
Multiscale Methods Framework with the 3D-RISM-KH Molecular Solvation Theory for Supramolecular Structures, Nanomaterials, and Biomolecules: Where Are We Going?
by Dipankar Roy and Andriy Kovalenko
Thermo 2023, 3(3), 375-395; https://doi.org/10.3390/thermo3030023 - 2 Jul 2023
Cited by 2 | Viewed by 1728
Abstract
3D-RISM-KH molecular solvation theory based on statistical mechanics has been an engine of the multiscale methods framework, which also includes molecular simulation techniques. Its applications range from the solvation energy of small molecules to the phase behavior of polymers and biomolecules. Molecular solvation [...] Read more.
3D-RISM-KH molecular solvation theory based on statistical mechanics has been an engine of the multiscale methods framework, which also includes molecular simulation techniques. Its applications range from the solvation energy of small molecules to the phase behavior of polymers and biomolecules. Molecular solvation theory predicts and explains the molecular mechanisms and functioning of a variety of chemical and biomolecular systems. This includes the self-assembly and conformational stability of synthetic organic rosette nanotubes (RNTs), the aggregation of peptides and proteins related to neurodegeneration, the binding of ligands to proteins, and the solvation properties of biomolecules related to their functions. The replica RISM-KH-VM molecular solvation theory predicts and explains the structure, thermodynamics, and electrochemistry of electrolyte solutions sorbed in nanoporous carbon supercapacitor electrodes, and is part of recent research and development efforts. A new quasidynamics protocol couples multiple time step molecular dynamics (MTS-MD) stabilized with an optimized isokinetic Nosé–Hoover (OIN) thermostat driven by 3D-RISM-KH mean solvation forces at gigantic outer time steps of picoseconds, which are extrapolated forward at short inner time steps of femtoseconds with generalized solvation force extrapolation (GSFE). The OIN/3D-RISM-KH/GSFE quasidynamics is implemented in the Amber Molecular Dynamics package. It is validated on miniprotein 1L2Y and protein G in ambient aqueous solution, and shows the rate of sampling 150 times faster than in standard MD simulations on these biomolecules in explicit water. The self-consistent field version of Kohn–Sham DFT in 3D-RISM-KH mean solvation forces is implemented in the Amsterdam Density Functional (ADF) package. Its applications range from solvation thermochemistry, conformational equilibria, and photochemistry to activation barriers of different nanosystems in solutions and ionic liquids. Full article
(This article belongs to the Special Issue Feature Papers of Thermo in 2023)
Show Figures

Figure 1

29 pages, 10076 KiB  
Article
Short-Range Order Modeling in Alloys
by Edward Kremer
Thermo 2023, 3(3), 346-374; https://doi.org/10.3390/thermo3030022 - 30 Jun 2023
Viewed by 879
Abstract
The short and long-range orders in alloys can be assessed based on a new expression for the combinatorial factor, which is more convenient and intuitive than the traditionally used form. This novel expression can be directly applied to reproduce the results of several [...] Read more.
The short and long-range orders in alloys can be assessed based on a new expression for the combinatorial factor, which is more convenient and intuitive than the traditionally used form. This novel expression can be directly applied to reproduce the results of several well-known statistical-thermodynamic models that are typically considered independent or even inconsistent. The short list of models includes Quasichemical Theory, Associated Solution Model, Surrounded Atom Model, and Cluster Site Approximation. As a result, the formalism and interpretation of these models are significantly clarified, allowing us to identify and fix several long-standing errors that might otherwise have gone unnoticed. Multicomponent generalization of these models is also greatly simplified. For systems undergoing a phase transition, an extended version of the theory provides a mechanism that allows the correct critical temperature of phase transition to be reproduced, as well as a significant increase in the accuracy of thermodynamic functions. In the case of order–disorder transformations, the new theory ensures an integrated description of short and long-range orders, which has long been considered an important and difficult problem. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop