Thermal and Spectral Characterization of a Binary Mixture of Medazepam and Citric Acid: Eutectic Reaction and Solubility Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mixture Preparation
2.3. DSC
2.4. FTIR
2.5. Solubility Tests
3. Results and Discussion
3.1. DSC
- Single compounds that have a lower melting temperature;
- The eutectic peak, which has a lower temperature than that of the single compounds;
- The increase in the enthalpy value of the eutectic until the eutectic point is reached, associated with the decrease in the enthalpy value of the excess component.
3.2. FTIR
3.3. Solubility Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vardanyan, R.S.; Hruby, V.J. Synthesis of Essential Drugs. Anxiolytics 2006, 5, 69–82. [Google Scholar] [CrossRef]
- Guinet, Y.; Paccou, L.; Hedoux, A. Analysis of xylitol—Citric acid system forming deep eutectic solvent: Application for dissolving poorly water-soluble drugs. A combination of calorimetric and Raman investigations. J. Mol. Liq. 2020, 318, 114317. [Google Scholar] [CrossRef]
- Reynolds, J. Martindale, The Extra Pharmacopeia, 30th ed.; The Pharmaceutical Press: London, UK, 1996; pp. 699–744. [Google Scholar]
- Emami, S.; Siahi-Shadbad, M.; Barzegar-Jalali, M.; Adibkia, K. Characterizing eutectic mixtures of gliclazide with succinic acid prepared by electrospray deposition and liquid assisted grinding methods. J. Drug Deliv. Sci. Technol. 2018, 45, 101–109. [Google Scholar] [CrossRef]
- Cherukuvada, S.; Nangia, A. Eutectics as improved pharmaceutical materials: Design, properties and characterization. Chem. Commun. 2014, 50, 906–923. [Google Scholar] [CrossRef] [PubMed]
- Hyun, S.M.; Lee, B.J.; Abuzar, S.M.; Lee, S.; Joo, Y.; Hong, S.H.; Kang, H.; Kwon, K.-A.; Velaga, S.; Hwang, S.-J. Preparation, characterization, and evaluation of celecoxib eutectic mixtures with adipic acid/saccharin for improvement of wettability and dissolution rate. Int. J. Pharm. 2019, 554, 61–71. [Google Scholar] [CrossRef]
- Stoler, E.; Warner, J. Non-Covalent Derivatives: Cocrystals and Eutectics. Molecules 2015, 20, 14833–14848. [Google Scholar] [CrossRef]
- Cherukuvada, S.; Row, T.N.G. Comprehending the Formation of Eutectics and Cocrystals in Terms of Design and Their Structural Interrelationships. Cryst. Growth. Des. 2014, 14, 4187–4198. [Google Scholar] [CrossRef]
- Leuner, C.; Dressman, J. Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 2000, 50, 47–60. [Google Scholar] [CrossRef]
- Alshaikh, R.A.; Essa, E.A.; El Maghraby, G.M. Eutexia for enhanced dissolution rate and anti-inflammatory activity of nonsteroidal anti-inflammatory agents: Caffeine as a melting point modulator. Int. J. Pharm. 2019, 563, 395–405. [Google Scholar] [CrossRef]
- Bazzo, G.C.; Mostafa, D.; França, M.T.; Pezzini, B.R.; Stulzer, H.K. How tenofovir disoproxil fumarate can impact on solubility and dissolution rate of efavirenz. Int. J. Pharm. 2019, 570, 118597. [Google Scholar] [CrossRef]
- Górniak, A.; Karolewicz, B.; Żurawska-Płaksej, E.; Pluta, J. Thermal, spectroscopic, and dissolution studies of the simvastatin–acetylsalicylic acid mixtures. J. Therm. Anal. Calorim. 2013, 111, 2125–2132. [Google Scholar] [CrossRef]
- Thipparaboina, R.; Thumuri, D.; Chavan, R.; Naidu, V.G.M.; Shastri, N.R. Fast dissolving drug-drug eutectics with improved compressibility and synergistic effects. Eur. J. Pharm. Sci. 2017, 104, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Machado, S.M.T.; Castro, R.A.E.; Maria, T.M.R.; Canotilho, J.; Eusébio, M.E.S. Levetiracetam + nonsteroidal anti-inflammatory drug binary systems: A contribution to the development of new solid dosage forms. Int. J. Pharm. 2017, 533, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Savjani, J.K. Co-crystallization: An approach to improve the performance characteristics of active pharmaceutical ingredients. AJP 2015, 9, 147–151. [Google Scholar] [CrossRef]
- Hille, B. The pH-dependent rate of action of local anesthetics on the node of Ranvier. J. Gen. Physiol. 1977, 69, 475–496. [Google Scholar] [CrossRef] [PubMed]
- Brandis, K. Alkalinisation of local anaesthetic solutions. Aust. Prescr. 2011, 34, 173–175. [Google Scholar] [CrossRef]
- Hickman, R.J.S.; Neill, J. Influence of pH on Drug Absorption from the Gastrointestinal Tract. J. Chem. Educ. 1997, 74, 855–856. [Google Scholar] [CrossRef]
- Garrett, E.R.; Bojarski, J.T.; Yakatan, G.J. Kinetics of Hydrolysis of Barbituric Acid Derivatives. J. Pharm. Sci. 1971, 60, 1145–1154. [Google Scholar] [CrossRef]
- Jagia, M.; Daptardar, R.; Patel, K.; Bansal, A.; Patel, S. Role of Structure, Microenvironmental pH, and Speciation To Understand the Formation and Properties of Febuxostat Eutectics. Mol. Pharm. 2019, 16, 4610–4620. [Google Scholar] [CrossRef]
- Elder, D.; Holm, R.; Diego, H. Use of pharmaceutical salts and cocrystals to address the issue of poor solubility. Int. J. Pharm. 2012, 453, 88–100. [Google Scholar] [CrossRef]
- Moore, M.D.; Wildfong, P.L.D. Aqueous Solubility Enhancement Through Engineering of Binary Solid Composites: Pharmaceutical Applications. J. Pharm. Innov. 2009, 4, 36–49. [Google Scholar] [CrossRef]
- Bruni, G.; Maggi, L.; Mustarelli, P.; Sakaj, M.; Friuli, V.; Ferrara, C.; Berbenni, V.; Girella, A.; Milanese, C.; Marini, A. Enhancing the Pharmaceutical Behavior of Nateglinide by Cocrystallization: Physicochemical Assessment of Cocrystal Formation and Informed Use of Differential Scanning Calorimetry for Its Quantitative Characterization. J. Pharm. Sci. 2019, 108, 1529–1539. [Google Scholar] [CrossRef] [PubMed]
- Saikia, B.; Seide lMorgenstern, A.; Lorenz, H. Multicomponent Materials to Improve Solubility: Eutectics of Drug Aminoglutethimide. Crystals 2022, 12, 40. [Google Scholar] [CrossRef]
- Costa, M.C.; Boros, L.A.D.; Coutinho, J.A.P.; Krahenbuhl, M.A.; Meirelles, A.J.A. Low-Temperature Behavior of Biodiesel: SolidLiquid Phase Diagrams of Binary Mixtures Composed of Fatty Acid Methyl Esters. Energy Fuels 2011, 25, 3244–3250. [Google Scholar] [CrossRef]
- Marinescu, D.; Pincu, E.; Stanculescu, I.; Meltzer, V. Thermal and spectral characterization of a binary mixture (acyclovir and fluocinolone acetonide): Eutectic reaction and inclusion complexes with β-cyclodextrin. Thermochim. Acta 2013, 560, 104–111. [Google Scholar] [CrossRef]
- Marinescu, D.; Pincu, E.; Meltzer, V. Thermodynamic study of binary system Propafenone Hydrocloride with Metoprolol Tartrate: Solid–liquid equilibrium and compatibility with α-lactose monohydrate and corn starch. Int. J. Pharm. 2013, 448, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Rai, U.S.; Rai, R.N. Chemistry and characterization of binary organic eutectics and molecular complexes. The urea-m-nitrobenzoic acid system. Materials 1998, 34, 67–75. [Google Scholar] [CrossRef]
- Macasoi, C.; Pincu, E.; Jurca, B.; Meltzer, V. Increasing the bromazepam solubility by forming eutectic mixture with citric acid. Thermochim. Acta 2021, 702, 178954. [Google Scholar] [CrossRef]
- Macasoi, C.; Pincu, E.; Jurca, B.; Romanitan, C.; Meltzer, V. Physico-chemical study of nitrazepam and citric acid eutectic mixture. Thermochim. Acta 2023, 724, 179499. [Google Scholar] [CrossRef]
- Patel, R.D.; Raval, M.K.; Bagathariya, A.A.; Sheth, N.R. Functionality improvement of Nimesulide by eutectic formation with nicotinamide: Exploration using temperature-composition phase diagram. Adv. Powder Technol. 2019, 30, 961–973. [Google Scholar] [CrossRef]
- Baka, E.; Comer, J.E.A.; Takacs-Novak, K. Study of equilibrium solubility measurement by saturation shake-flask method using hydrochlorothiazide as model compound. J. Pharm. Biomed. Anal. 2008, 46, 335–341. [Google Scholar] [CrossRef]
- Tao, M.; Wang, Z.; Gong, J.; Hao, H.; Wang, J. Determination of the Solubility, Dissolution Enthalpy, and Entropy of Pioglitazone Hydrochloride (Form II) in Different Pure Solvents. Ind. Eng. Chem. Res. 2013, 52, 3036–3041. [Google Scholar] [CrossRef]
The Mole Fraction of Medazepam (xMedazepam) | First DSC Peak | Second DSC Peak | The Solid Phase | |
---|---|---|---|---|
TEutectic (K) | ΔHeutectic (J·g−1) | T/K | ||
0 | - | - | 432.7 | citric acid |
0.1000 | 371.4 | 1.41 | 417.5 | citric acid |
0.1500 | 369.7 | 3.16 | 414.0 | citric acid |
0.2000 | 371.1 | 5.61 | 410.8 | citric acid |
0.2999 | 370.0 | 13.41 | 399.0 | citric acid |
0.4948 | 370.0 | 32.30 | 387.4 | citric acid |
0.6960 | 371.1 | 43.64 | 371.1 | citric acid + medazepam |
0.8008 | 370.0 | 47.96 | 370.0 | citric acid + medazepam |
0.8534 | 370.2 | 55.15 | 370.2 | citric acid + medazepam |
0.9003 | 369.6 | 33.69 | 371.0 | medazepam |
0.9519 | 369.7 | 15.11 | 373.3 | medazepam |
1 | - | - | 375.3 | medazepam |
XMedazepam | Ti(K) | lnγ Citric Acid | lnγ Medazepam | SE (J·mol−1) | GE (J·mol−1·10−2) | 𝜇 Citric AcidE (J·mol−1) | 𝜇 MedazepamE (J·mol−1) |
---|---|---|---|---|---|---|---|
0.1000 | 417.50 | −0.3210 | 3.1592 | −0.224 | 0.937 | −1114.3 | 10,965.8 |
0.1500 | 414.00 | −0.3665 | 2.6893 | −0.764 | 3.162 | −1261.5 | 9256.6 |
0.2000 | 410.80 | −0.4012 | 2.3418 | −1.225 | 5.034 | −1370.3 | 7998.1 |
0.2999 | 399.00 | −0.6327 | 1.7077 | −0.575 | 2.296 | −2098.7 | 5664.9 |
0.4948 | 387.40 | −0.6867 | 0.9683 | −1.099 | 4.258 | −2211.7 | 3118.7 |
0.8534 | 370.20 | −0.0572 | 0.0418 | −0.227 | 0.839 | −176.1 | 128.6 |
0.9003 | 371.00 | 0.3578 | 0.0068 | −0.348 | 1.289 | 1103.7 | 21.0 |
0.9519 | 373.30 | 1.1709 | 0.0039 | −0.499 | 1.863 | 3634.0 | 12.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macasoi, C.; Meltzer, V.; Pincu, E. Thermal and Spectral Characterization of a Binary Mixture of Medazepam and Citric Acid: Eutectic Reaction and Solubility Studies. Thermo 2023, 3, 483-493. https://doi.org/10.3390/thermo3030029
Macasoi C, Meltzer V, Pincu E. Thermal and Spectral Characterization of a Binary Mixture of Medazepam and Citric Acid: Eutectic Reaction and Solubility Studies. Thermo. 2023; 3(3):483-493. https://doi.org/10.3390/thermo3030029
Chicago/Turabian StyleMacasoi, Cristina, Viorica Meltzer, and Elena Pincu. 2023. "Thermal and Spectral Characterization of a Binary Mixture of Medazepam and Citric Acid: Eutectic Reaction and Solubility Studies" Thermo 3, no. 3: 483-493. https://doi.org/10.3390/thermo3030029