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Abstract: In general, for an organic compound a plot of the log vapor pressure versus inverse
temperature is linear over a wide temperature range. This however can lead to a point of confusion
in an undergraduate thermodynamics course. This linear behavior is typically explained using
the Clausius/Clapeyron equation. That is, starting with the Clapeyron equation one first assumes
(1) that the change in compressibility upon vaporization is approximately 1, or equivalently that the
vapor phase may be treated as an ideal gas where the molar volume of the vapor is much greater
than that of the liquid, which may be assumed negligible. And second (2), that the enthalpy of
vaporization is constant. While the resulting linear behavior is captured, the underlying assumptions
are not applicable over the wide range of temperatures of interest. Here we discuss the shortcomings
of the conventional explanation of the Clausius/Clapeyron equation. We further demonstrate that
a simple solution is to instead assume that the enthalpy of vaporization relative to the change in
compressibility upon vaporization is constant. We provide a series of examples and MATLAB code
that can be used in an undergraduate thermodynamics course.

Keywords: vapor pressure; enthalpy of vaporization; Clausius/Clapeyron; chemical engineering
thermodynamics; phase equilibrium thermodynamics; undergraduate education

1. Introduction

The knowledge and understanding, in addition to the ability to predict, phase equi-
librium is of central importance for the design of a wide range of chemical processes. As
such, phase equilibrium thermodynamics is a keystone in the undergraduate chemical
engineering curriculum. Early in this discussion students are typically introduced to the
Clapeyron equation.

In general, for an organic compound, a plot of the log vapor pressure versus inverse
temperature is linear over a wide temperature range. The Clapeyron equation relates the
log vapor pressure to the the inverse temperature, and is derived using our fundamental
equation, thermodynamic definitions, and our criteria of phase equilibrium. It is common
in the undergraduate curriculum to make a series of two assumptions to go from the
Clapeyron to the Clausius/Clapeyron equation. First, it is common to assume (1) that
the change in compressibility upon vaporization is approximately 1, or equivalently that
the vapor phase may be treated as an ideal gas where the molar volume of the vapor
is much greater than that of the liquid, which may be assumed negligible. And second
(2), that the enthalpy of vaporization is constant. The resulting expression predicts that
the log vapor pressure versus inverse temperature is linear, in apparent agreement with
reference data [1–6].

Unfortunately, this may be misleading and cause confusion to some students. Namely,
it is known that the enthalpy of vaporization is a positive, temperature-dependent quan-
tity that goes to zero at the critical point. Likewise, the change in compressibility upon
vaporization is approximately one at low temperatures, but goes to zero at the critical point.
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In the present manuscript we encourage use of a single assumption that the enthalpy of
vaporization relative to the change in compressibility upon vaporization is constant. This is
motivated by use of the freely available reference data from “Thermophysical Properties of
Fluid Systems” by NIST [7] and with MATLAB code (or MS Excel template) accompanying
the electronic version of this manuscript which may be integrated into the undergraduate
course. We have shown that this is superior to the conventional explanation, in addition to
being simpler.

Given its importance, several articles related to the Clausius/Clapeyron equation have
appeared in the Journal of Chemical Education over the past 70 years. In 1951, Brown [8]
motivated the inclusion of compressibility as carried out here in the present study. Like-
wise, the article “Putting Clapeyron’s Equation into Practical Use with No Help from
Clausius” by Waldenstrøm et al. [9], points out the limitation of the conventional form of
the Clausius/Clapeyron equation which assumes that the change in compressibility upon
vaporization is taken to be 1. The authors subsequently provide an excellent discussion on
the modeling of the log vapor pressure as a function of temperature. Unfortunately, the
material is likely too advanced for most undergraduate thermodynamics courses where
students are exposed to the Clapeyron equation for the first time. This is similar to the more
recent article “On the Clausius/Clapeyron vapor pressure equation” by Velasco et al. [10]
who likewise point out the limitation of the conventional form of the Clausius/Clapeyron
equation which assumes change in compressibility upon vaporization is taken to be 1. In
the introduction, they further mention that for some substances the ratio of the enthalpy
of vaporization relative to the change in compressibility upon vaporization is constant,
as we will show in the present manuscript. The authors used this to model the phase
behavior of a range of fluids wherein the critical point was adopted as the reference state,
which facilitates the use of reduced units. Furthermore, the authors developed an analytic
correction to the Clausius/Clapeyron equation. While this work mentions that for some
substances the ratio of the enthalpy of vaporization relative to the change in compressibility
upon vaporization is constant, they do not provide further explanation or examples.

In the work of Pollnow [11] the author discussed how to regress the constants A
and B in the integrated Clausius/Clapeyron equation of the form log10 Psat = A− B/T
using reference data. However, the constant B is related to the enthalpy of vaporization
divided by the molar gas constant, suggesting that the change in compressibility upon
vaporization is taken to be 1. In the work of Discoll [12] the author describes an apparatus
to measure the enthalpy of vaporization via the Clausius/Clapeyron equation. The form of
the Clausius/Clapeyron equation employed neglects (and makes no mention of) the change
in compressibility upon vaporization. Fortunately, the author is dealing with low pressures
where it is reasonable to assume the change in compressibility upon vaporization is 1.
Likewise, Galleano et al. [13] describes modifications that can be made to a commercially
available pressure cooker to allow student to measure the enthalpy of vaporization via the
Clausius/Clapeyron equation, where the employed form likewise neglects (and makes no
mention of) the change in compressibility upon vaporization.

In the present study our intention is to provide resources to help introduce the Clapey-
ron equation in an undergraduate thermodynamics course. We provide MATLAB code and
an MS Excel template that works with freely available reference data from “Thermophys-
ical Properties of Fluid Systems” by NIST [7] to improve student understanding. Using
the available reference data, we demonstrate that assuming the ratio of the enthalpy of
vaporization relative to the change in compressibility upon vaporization is constant is often
a reasonable assumption, and is far superior to the conventional approach. We further
demonstrate the ability of the resulting expression to model the reference vapor pressure
data. In directly modeling and working with actual reference data, we believe student
engagement and understanding are enhanced.
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2. Clapeyron Equation

While there are multiple, common approaches to drive the Clapeyron equation, here
we will make use the dimensionless (molar) Gibbs free energy, G/(RT), as a generating
function [1]. Starting with our definitions of G:

G = H − TS (1)

and
dG = −SdT + VdP (2)

we next work out the corresponding differential for the dimensionless (molar) Gibbs
free energy:

d
(

G
RT

)
=

1
R

[
TdG− GdT

T2

]
=

dG
RT
− G

RT2 dT

=
1

RT
[−SdT + VdP]− (H − TS)

RT2 dT

= − S
RT

dT +
V
RT

dP− H
RT2 dT +

S
RT

dT

(3)

which leads to the final expression:

d
(

G
RT

)
= − H

RT2 dT +
V
RT

dP (4)

Next, two simplifications are made. Starting with the first differential:

d
(

1
T

)
= − 1

T2 dT (5)

and then the second:
V
RT

=
Z
P

(6)

where:
d(ln P) =

1
P

dP (7)

Therefore:

d
(

G
RT

)
=

H
R

d
(

1
T

)
+ Zd(ln P) (8)

Considering the general case of equilibrium between phases I and I I, at coexistence:

T I = T I I = T (9)

PI = PI I = Psat (10)

GI = GI I = G (11)

If the system were to remain in a state of equilibrium for a change in T and P, we have:

d
(

GI

RT

)
= d

(
GI I

RT

)
H I

R
d
(

1
T

)
+ ZId

(
ln Psat) = H I I

R
d
(

1
T

)
+ ZI Id

(
ln Psat) (12)

Collecting terms:

− (H I I − H I)

R
d
(

1
T

)
= (ZI I − ZI)d(ln Psat)

− (H I I − H I)

R(ZI I − ZI)
=

d(ln Psat)

d(1/T)

(13)
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For the case of vapor–liquid equilibrium, let phase I I be vapor and phase I be liquid. This
results in (one of several forms of) the Clapeyron equation:

d(ln Psat)

d(1/T)
= − ∆Hvap

R∆Zvap (14)

2.1. Clausius/Clapeyron Equation

While the Clapeyron Equation (Equation (14)) is rigorously correct, we next make
a series of assumptions that will ultimately lead to the Clausius/Clapeyron equation
commonly introduced in the undergraduate curriculum. This is motivated by Figure 1,
wherein a plot of ln Psat versus 1/T appears linear from the triple point to the critical
point [1–6], considering the case of water as an example [7,14]. We note that all of the
figures included in this manuscript were prepared with MATLAB code available in the
supporting information accompanying the electronic version of this manuscript. While in
this manuscript we only consider the case of water and hexane as examples, additional
systems are provided as an example in the supporting information.

1.5 2 2.5 3 3.5

1000/T [1/K]

0

2

4

6

8

10

12

ln
 P

/P
0

Figure 1. A Clapeyron plot of NIST reference data for water of the log vapor pressure relative
to the vapor pressure at the triple point (ln P/P0) versus the inverse absolute temperature times
1000 (1000/T) [7,14]. The plot spans from the triple point (T = 273.16 K, P = 0.0061165 bar) to
approximately the critical point (Tc = 647.096 K, Pc = 220.640 bar).

On the right hand side, first we consider ∆Zvap. At low temperatures well removed
from the critical point, it can be assumed the vapor phase is an ideal gas. For this case
we take:

∆Zvap = ZV − ZL = PVig

RT −
PVL

RT = P
RT (V

ig −VL) (15)

Further assuming that Vig is much greater than VL such that VL can be assumed negligible:

∆Zvap ≈ PVig

RT
= 1 (16)
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This is equivalent to assuming that ZV = 1 and the ZL is negligible. This results in
the expression:

d(ln Psat)

d(1/T)
= −∆Hvap

R
(17)

In general, undergraduate students are told that the assumptions are reasonable so long as
we are well removed from the critical point [1–6].

Next, in order to integrate Equation (17), the temperature dependence of ∆Hvap must
be known. If we assume that ∆Hvap is constant over a temperature range of interest, we
obtain the expression:

ln Psat = A− B
T

(18)

where A and B are positive constants, where:

A = ln Psat
0 +

∆Hvap

RT0
(19)

where T0 is the reference temperature and Psat
0 the reference saturation pressure at T0, and:

B =
∆Hvap

R
(20)

Equation (18) suggests that a plot of ln Psat versus 1/T should be linear with a negative
slope. This well explains the observation of Figure 1. While most undergraduate textbooks
acknowledge that the assumption that ZV ≈ 1 and that ZL is negligible is only reasonable
at low pressures well removed from the critical point, Equations (18)–(20) are typically the
end point for discussion [1–4].

While this provides justification of the linear trend in Figure 1, it is misleading and can
cause confusion to the undergraduate student learning the material for the first time. At
low pressures well removed from the critical point, it is reasonable to assume ∆Zvap ≈ 1.
However, at the critical point where the two phases cease to exist, ∆Zvap → 0. Therefore,
∆Zvap decreases with increasing temperature. Likewise, ∆Hvap is not constant as evident
by the Watson equation typically introduced in the undergraduate curriculum [15–17].
Below the critical point ∆Hvap > 0, and at the critical point ∆Hvap → 0. We therefore
find also that ∆Hvap decreases with increasing temperature. Knowing this, the previous
approach used to arrive at Equation (18) is less than satisfying, even though it appears to
agree with Figure 1.

This shortcoming is acknowledged by two of the common undergraduate textbooks
which we reviewed. Koretsky [6] arrives at Equation (18) using the assumptions listed
earlier. However, he acknowledges that the error introduced by assuming ∆Hvap is constant
(assumption 3) is approximately offset by the error introduced by assuming ZL is negligible
and ZV = 1 (assumptions 1 and 2).

A further discussion is provided by Elliott and Lira [5]. In that work the authors
arrive at Equation (18) using the assumptions listed earlier. However, this is followed
in their textbook by Section 9.3 “Shortcut Estimation of Saturation Properties”. Here the
authors mention that one may alternatively arrive at Equation (18) by instead assuming
that ∆Hvap/∆Zvap is constant. Further, this assumption is reasonable over the range
0.5 < Tr < 1, where Tr = T/Tc is the reduced temperature, where Tc is the critical
temperature. The authors then use the critical point (Tr = 1) and acentric factor (Tr = 0.7)
as reference points to solve for the constants A and B, to develop a predictive vapor
pressure expression. We note also that the suggestion of assuming ∆Hvap/∆Zvap is constant
is also made in references [17,18]; however, these are references not typically used in
undergraduate courses.
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2.2. Updated Clausius/Clapeyron Equation Discussion

Here our motivation is to build upon the work of Elliott and Lira [5], and present an
alternative discussion and motivation for Equation (18) to explain the linearity of ln Psat

versus 1/T. Within our discussion here we will consider the case of water and hexane, using
reference data readily available from the “Thermophysical Properties of Fluid Systems”
by NIST [7]. MATLAB code used for all of the analysis and figures is provided in the
supporting information accompanying the electronic version of this manuscript, along with
additional systems that may be used as an example. The goal of the MATLAB code is to
provide a useful resource for undergraduate thermodynamics students.

It is our recommendation that one should start with the rigorously correct Clapeyron
equation (Equation (14)). From there, one need only introduce the single assumption
that the ratio ∆Hvap/∆Zvap is constant which allows one to obtain the integrated Clau-
sius/Clapeyron equation (Equation (18)), where now:

A = ln Psat
0 +

∆Hvap

R∆ZvapT0
(21)

where T0 is the reference temperature and Psat
0 the reference saturation pressure at T0, and:

B =
∆Hvap

R∆Zvap (22)

This is a simple update to the conventional instruction. This is motivated and reinforced to
students in a series of simple plots.

First, in Figures 2 and 3 we consider plots of ∆Hvap/R and ∆Zvap versus T, and
a plot of ∆Hvap/R versus ∆Zvap. The plots span the temperature range from the triple
point to the critical point. As expected, ∆Hvap/R is positive, decreasing to a value of 0
at the critical point. Likewise, ∆Zvap ≈ 1 at low temperatures, decreasing to a value of
0 at the critical point. We therefore see that it is not reasonable to assume ∆Zvap = 1
over the entire temperature range, nor is it reasonable to assume ∆Hvap is constant over
the entire temperature range. However, the functional dependence of ∆Hvap/R and
∆Zvap versus T are similar. Furthermore, the plot of ∆Hvap/R versus ∆Zvap appears to be
linear, except near the triple point. Near the triple point, the rate of decrease in ∆Hvap is
greater than ∆Zvap.
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Figure 2. Plots of NIST reference data for water for the temperature (T) dependence of the enthalpy
of vaporization relative to the gas constant (∆Hvap/R) and the change in compressibility upon
vaporization (∆Zvap = ZV − ZL) [7,14]. In the third pane we additionally plot ∆Hvap/R versus
∆Zvap. The plot was generated using the MATLAB code accompanying the electronic version of this
manuscript. The plots span from the triple point (T = 273.16 K, P = 0.0061165 bar) to approximately
the critical point (Tc = 647.096 K, Pc = 220.640 bar).
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Figure 3. Plots of NIST reference data for hexane for the temperature (T) dependence of the enthalpy
of vaporization relative to the gas constant (∆Hvap/R) and the change in compressibility upon
vaporization (∆Zvap = ZV − ZL) [7]. In the third pane we additionally plot ∆Hvap/R versus
∆Zvap. The plot was generated using the MATLAB code accompanying the electronic version of
this manuscript. The plots span from the triple point (T = 177.83 K, P = 1.189 × 10−5 bar) to
approximately the critical point (Tc = 507.82 K, Pc = 30.441 bar).

Next, in Figures 4 and 5 we plot ∆Hvap/(R∆Zvap) versus T and 1/T from the triple
point to the critical point. We compare the case where ∆Zvap = 1, corresponding to the
case of ∆Hvap/(R∆Zvap) = ∆Hvap/R, to the case where we account for the temperature
dependence of ∆Zvap. We find that the range of values for ∆Hvap/(R∆Zvap) is significantly
smaller than for ∆Hvap/R. While both ∆Hvap and ∆Zvap decrease with increasing temper-
ature, the effect in ∆Hvap/(R∆Zvap) appears to cancel. We see that it is more reasonable to
assume ∆Hvap/(R∆Zvap) is constant as compared to assuming ∆Hvap is constant.
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Figure 4. Plots of NIST reference data for water for ∆Hvap/(R∆Zvap) versus T (top pane) and
1000/T (bottom pane) [7,14]. The black line corresponds to use of the assumption ∆Zvap = 1
while the red line makes use of temperature-dependent values of ∆Zvap. The plots span from the
triple point (T = 273.16 K, P = 0.0061165 bar) to approximately the critical point (Tc = 647.096 K,
Pc = 220.640 bar).

This is further emphasized by the Watson plot in Figures 6 and 7. In a Watson
plot, we find that ln ∆Hvap/R versus ln(1− Tr) yields a straight line [15–17]. In Figure 6
we consider the case of ln ∆Hvap/(R∆Zvap) and ln ∆Hvap/R (where ∆Zvap = 1) versus
ln(1− Tr). While ln ∆Hvap/R versus ln(1− Tr) yields a straight line as expected, we
find that ln ∆Hvap/(R∆Zvap) versus ln(1− Tr) appears nearly constant. We do observe
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curvature near the triple point, but in general ln ∆Hvap/(R∆Zvap) appears constant over a
wide range of temperatures.
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Figure 5. Plots of NIST reference data for hexane for ∆Hvap/(R∆Zvap) versus T (top pane) and
1000/T (bottom pane) [7]. The black line corresponds to use of the assumption ∆Zvap = 1 while
the red line makes use of temperature-dependent values of ∆Zvap. The plots span from the triple
point (T = 177.83 K, P = 1.189 × 10−5 bar) to approximately the critical point (Tc = 507.82 K,
Pc = 30.441 bar).
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Figure 6. Watson plot of NIST reference data for water for ln ∆Hvap/(R∆Zvap) versus ln(1− T/Tc),
where T/Tc = Tr is the reduced temperature [7,14]. The black line corresponds to use of the
assumption ∆Zvap = 1 while the red line makes use of temperature-dependent values of ∆Zvap. The
plots span from the triple point (T = 273.16 K, P = 0.0061165 bar) to approximately the critical point
(Tc = 647.096 K, Pc = 220.640 bar).

As our final example, we return to our starting point of the Clapeyron equation
(Equation (14)), then separate and numerically integrate the resulting expression. Inte-
grating from a reference temperature (T0) and corresponding reference pressure (Psat

0 ):∫ ln Psat

ln Psat
0

d(ln Psat) = −
∫ 1/T

1/T0

∆Hvap

R∆Zvap d(1/T)

ln
Psat

Psat
0

= −
∫ 1/T

1/T0

∆Hvap

R∆Zvap d(1/T)
(23)

In order to evaluate this expression, one must know the temperature dependence of
∆Hvap/∆Zvap. Fortunately, tabulated data are readily available from the “Thermophysical
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Properties of Fluid Systems” by NIST which can be numerically integrated and compared
to the reference vapor pressure data. In the top pane of Figures 8 and 9, we numerically
integrate two sets of temperature-dependent data and compare to reference vapor pressure
data, taking our reference state to be the triple point. In the first case, we set ∆Zvap = 1,
which corresponds to numerically integrating ∆Hvap/R. The predicted data match the
reference vapor pressure at the triple point by construction, but diverge at the critical point
due to propagation of errors and the assumption of ∆Zvap = 1 breaks down with increasing
temperature. Clearly then, ∆Zvap is important for accurate calculations. In the second case
we numerically integrate ∆Hvap/(R∆Zvap). The resulting predictions match the reference
data as expected.
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Figure 7. Watson plot of NIST reference data for hexane for ln ∆Hvap/(R∆Zvap) versus ln(1− T/Tc),
where T/Tc = Tr is the reduced temperature [7,14]. The black line corresponds to use of the
assumption ∆Zvap = 1 while the red line makes use of temperature-dependent values of ∆Zvap. The
plots span from the triple point (T = 177.83 K, P = 1.189× 10−5 bar) to approximately the critical
point (Tc = 507.82 K, Pc = 30.441 bar).

Following this, in the middle pane we consider the case of assuming ∆Hvap/(R∆Zvap)
is constant. For the value of ∆Hvap/(R∆Zvap) we compare the use of the value at the lowest
temperature (the triple point, min), the average value (avg) and the average (natural) log
value (Lavg), and the value at the highest temperature (just below the critical point, max).
We find that the use of the average and average log value result in excellent predictions that
appear to overlap the reference data. The use of the value at the highest temperature also
performs exceptionally well. The performance with the minimum temperature is the worst;
nonetheless, the predictions are still very good considering they require only knowledge of
∆Hvap/(R∆Zvap) at the triple point.

Lastly, in the bottom pane, we consider the case of assuming ∆Zvap = 1 and assuming
∆Hvap/R is constant. For the value of ∆Hvap/R we again use the value at the lowest
temperature (the triple point, min), the average value (avg) and the average (natural)
log value (Lavg), and the value at the highest temperature (just below the critical point,
max). Interestingly, the best set of predictions is made using the value at the triple point.
At the triple point, the assumption that ∆Zvap = 1 is reasonable, and we find that the
predictions using a constant value of ∆Hvap/(R∆Zvap) and ∆Hvap/R at the triple point
are indistinguishable from each other. The other predictions noticeably diverge from
the reference data, with the predictions worst using the value of ∆Hvap/R at the highest
temperature where the assumption that ∆Zvap = 1 is least appropriate.



Thermo 2023, 3 421

Figure 8. Clapeyron plots of NIST reference data for water of the log vapor pressure rela-
tive to the vapor pressure at the triple point (ln P/P0) versus the inverse absolute temperature
times 1000 (1000/T) as compared to predictions made by numerically integrating the Clapeyron
equation [7,14]. In the top pane, reference (ref) is compared to predictions made by numerically
integrating ∆Hvap/(R∆Zvap) and ∆Hvap/R, as indicated, where the latter assumes ∆Zvap = 1.
In the middle pane, reference (ref) is compared to predictions made by numerically integrating
∆Hvap/(R∆Zvap) which is taken to be constant. We compare the use of the value at the lowest
temperature (the triple point, min), the average value (avg) and the average (natural) log value
(Lavg), and the value at the highest temperature (0.097 K below the critical point, max). In the bottom
pane, reference (ref) is compared to predictions made by numerically integrating ∆Hvap/R which
is taken to be constant and assumes ∆Zvap = 1. The plots span from the triple point (T = 273.16 K,
P = 0.0061165 bar) to approximately the critical point (Tc = 647.096 K, Pc = 220.640 bar).

Figure 9. Clapeyron plots of NIST reference data for hexane of the log vapor pressure rela-
tive to the vapor pressure at the triple point (ln P/P0) versus the inverse absolute temperature
times 1000 (1000/T) as compared to predictions made by numerical integrating the Clapeyron
equation [7,14]. In the top pane, reference (ref) is compared to predictions made by numerically
integrating ∆Hvap/(R∆Zvap) and ∆Hvap/R, as indicated, where the latter assumes ∆Zvap = 1.
In the middle pane, reference (ref) is compared to predictions made by numerically integrating
∆Hvap/(R∆Zvap) which is taken to be constant. We compare the use of the value at the lowest
temperature (the triple point, min), the average value (avg) and the average (natural) log value
(Lavg), and the value at the highest temperature (0.82 K below the critical point, max). In the bottom
pane, reference (ref) is compared to predictions made by numerically integrating ∆Hvap/R which
is taken to be constant and assumes ∆Zvap = 1. The plots span from the triple point (T = 177.83 K,
P = 1.189× 10−5 bar) to approximately the critical point (Tc = 507.82 K, Pc = 30.441 bar).
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3. Summary and Conclusions

The knowledge and understanding of fluid phase equilibrium is indispensable for the
design of a wide range of chemical processes, and as such is a cornerstone of the undergrad-
uate chemical engineering curriculum. In the study of phase equilibrium, early attention is
often devoted to the use of the Clapeyron equation. Starting with our fundamental thermo-
dynamic relationships and criteria for phase equilibrium, the Clapeyron equation presents
the opportunity to make reasonable assumptions to obtain a simple expression capable
of explaining the linearity of a plot of the log vapor pressure versus inverse temperature.
Unfortunately, the assumptions made are often not appropriate and may cause confusion
among students.

Here we encourage use of a single assumption that ∆Hvap/(R∆Zvap) is constant. This
is motivated by use of NIST reference data and MATLAB code (or MS Excel template)
accompanying the electronic version of this manuscript. We have shown that this is superior
to the conventional approach of assuming first (1) that the change in compressibility upon
vaporization (∆Zvap) is approximately 1, or equivalently that the vapor phase may be
treated as an ideal gas where the molar volume of the vapor is much greater than that of the
liquid, which may be assumed negligible. And second (2), that the enthalpy of vaporization
(∆Hvap) is constant. While the conventional approach is able to explain linearity, it can be
misleading as both ∆Hvap and ∆Zvap are known to go to zero at the critical point.

While this may appear a minor detail, we believe this is important as most students
are introduced to the thermodynamics of phase equilibrium for the first time. The beauty
of the Clapeyron equation is that we are able to derive an expression to interpret real phase
equilibrium data using our fundamental equations. The student should not be confused or
misled, as this is an important skill we wish to encourage students to develop and apply in
the future.

The MATLAB code accompanying the electronic version of this manuscript may serve
as a valuable resource in an undergraduate thermodynamics course. Included with it is
an instructional document on how to operate the MATLAB code itself as well as “Thermo-
physical Properties of Fluid Systems” by NIST [7] reference data for thirty-four chemical
species. An MS Excel template is also provided. Instructions are additionally provided for
downloading and updating the analysis for additional systems. The use of MATLAB code
or MS Excel presents opportunities for undergraduates to explore the characterization of
phase equilibrium, to compare/contrast different chemical species, and to fully understand
and appreciate the underlying assumptions of the Clausius/Clapeyron equation.
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