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Abstract: 3D-RISM-KH molecular solvation theory based on statistical mechanics has been an engine
of the multiscale methods framework, which also includes molecular simulation techniques. Its
applications range from the solvation energy of small molecules to the phase behavior of polymers
and biomolecules. Molecular solvation theory predicts and explains the molecular mechanisms and
functioning of a variety of chemical and biomolecular systems. This includes the self-assembly and
conformational stability of synthetic organic rosette nanotubes (RNTs), the aggregation of peptides
and proteins related to neurodegeneration, the binding of ligands to proteins, and the solvation
properties of biomolecules related to their functions. The replica RISM-KH-VM molecular solvation
theory predicts and explains the structure, thermodynamics, and electrochemistry of electrolyte
solutions sorbed in nanoporous carbon supercapacitor electrodes, and is part of recent research and
development efforts. A new quasidynamics protocol couples multiple time step molecular dynamics
(MTS-MD) stabilized with an optimized isokinetic Nosé–Hoover (OIN) thermostat driven by 3D-
RISM-KH mean solvation forces at gigantic outer time steps of picoseconds, which are extrapolated
forward at short inner time steps of femtoseconds with generalized solvation force extrapolation
(GSFE). The OIN/3D-RISM-KH/GSFE quasidynamics is implemented in the Amber Molecular Dy-
namics package. It is validated on miniprotein 1L2Y and protein G in ambient aqueous solution, and
shows the rate of sampling 150 times faster than in standard MD simulations on these biomolecules in
explicit water. The self-consistent field version of Kohn–Sham DFT in 3D-RISM-KH mean solvation
forces is implemented in the Amsterdam Density Functional (ADF) package. Its applications range
from solvation thermochemistry, conformational equilibria, and photochemistry to activation barriers
of different nanosystems in solutions and ionic liquids.

Keywords: molecular solvation theory; statistical mechanics; solvation thermodynamics; molecular
simulations; electronic structure calculations; electrolytes; supercapacitors; molecular interactions

1. Introduction

Molecular properties often differ significantly from continuous media mostly due to
the different scalability of these systems. The governing factors in such different behaviors
are rooted in the different forms arising due to size, shape, and composition(s), as well as
physical state(s). Thus, from the perspective of the building materials of desired properties,
understanding all the underlying interactions between different constituent fragments is
essential. This is a difficult task from an experimental chemistry point of view, due to
the sheer number of possible combinations between structures and resultant reactivity
and/or activity. Theoretical prediction is the most useful tool to address this conundrum, as
prediction can extend over the entire range of the size scale and also to the larger part of the
time scale. This allows predictive modeling capabilities to address issues related to single
molecules from the realm of complex biomolecules to the world of nanomaterials. The
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limitation of predictive modeling is the incompatibility of sophisticated electronic structure
methods and/or molecular-dynamics-based simulation techniques for systems of a real-
world size constituting millions of atoms, if not billions, as the computing cost becomes
astronomical. A true multiscale predictive method should thus possess sufficient ability
to couple lower-scale methods to higher-scale ones by propagating the accuracy of the
lower-scale methods to a large extent to the higher-scale systems without the impediment of
extensive computational requirements. It is important to note that the sophistication level
of gas-phase chemical physics is most often impossible to apply to real-world systems due
to not only the size issue but also to the presence of the solvent medium interacting directly.

For a system embedded in a continuum medium, quantum mechanical calculations
using continuum solvation models generally provide reliable outcomes, provided the
systems are of reasonable size to be treated with at least a triple-ζ basis set. However,
the presence of heavy elements renders such a methodology useless. The applicability of
the Onsager equation in predicting solvation free energy has been questioned recently [1].
An extensive search of the available literature clearly indicates a clear classification of the
possible schemes in handing (bio)chemical processes in solution, either by using continuum
solvation models, or the so-called cluster continuum models and quasi-chemical models,
all with system size limitations [2–10]. The other class of methods based on statistical
mechanics, viz., the reference interaction site model (RISM), has been gaining popularity in
addressing molecular systems in liquid media due to its reasonable accuracy, speed of cal-
culation, and extendibility over the entire scale of the molecular size and time scales [11,12].
The molecular solvation theory with integral equation formalism is based on the modified
Ornstein–Zernike (OZ) theory for the dimensional reduction of molecular liquids [13]. The
spatial distributions and statistical mechanical ensembles are key to the RISM theory in
order to predict solvation thermodynamics and behavior via integration over an infinite
number of interaction diagrams. The three-dimensional version, 3D-RISM theory [14–22],
gives 3D maps of the distributions of a solvent around a solute macromolecule of arbitrary
shape by integrating a single integral of correlation functions. A successful implementation
of the MOZ equation for the 3D-RISM application needs a mathematical function, a closure
relation, which can be generalized as a functional to impose a consistency condition of the
path-independent chemical potential µ. Despite over forty years of developments in RISM
theory, only a handful of closure relations exist, varying substantially in accuracy and the
scope of application [23–25]. The most promising closure relation, the Kovalenko–Hirata
(KH) approximation, has been shown to work for small molecules, biomolecules, nano-
materials, aggregates, and ligand–protein interactions with high accuracy in the whole
range of thermodynamic conditions [26–31]. The replica RISM-KH-VM molecular solvation
theory predicts the properties of electrolyte solutions sorbed in disordered nanoporous
electrodes [32–37]. The 3D-RISM-KH theory is also applied to protein-folding problems, the
drug efflux mechanism, clay minerals, ionic solvents, and electrolytes in solutions [38–42].
It has been shown that the theoretical framework of the 3D-RISM-KH closure significantly
accelerates sampling over slow and rare solvation events in complex biomolecular systems,
e.g., solvent and ion exchanges and localization in biomolecular simulations, and molecular
recognition, including protein–ligand binding, DNA association, and protein–protein (or
peptide) interactions [43,44]. One can also use electronic structure calculations with the
3D-RISM-KH molecular theory of solvation with various levels of sophistication [45].

2. Theoretical Background

Molecular solvation theory, in particular, the 3D-RISM-KH integral equation for molec-
ular liquids, relies on the probability density ργ gγ(r) of finding interaction site γ of solvent
molecules at 3D space position r around a solute molecule or arbitrary shape, with the
average solvent site number density ργ in the solution bulk and the normalized solvent site
density distribution gγ(r). This 3D solvent site distribution function gγ(r) assumes the val-
ues gγ(r) > 1 or gγ(r) < 1 in the areas of density enhancement or depletion, respectively. At
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a distance from the solute, it levels out to gγ→1. The 3D solvent site distribution functions
around the solute molecule are obtained from the 3D-RISM integral equation

hγ(r) = ∑
α

∫
V

dr′ cα(r− r′)χαγ(r′) (1)

where hγ(r) = gγ(r) − 1 is the 3D total correlation function of solvent interaction site γ,
cγ(r) ~ −uγ(r)/(kBT) is the 3D direct correlation function which has the asymptotics of the
solute–solvent site interaction potential uγ(r), the site-site susceptibility of pure solvent
χαγ(r) is an input to the 3D-RISM theory, indices α and γ enumerate all interaction sites
on all sorts of solvent species, T is temperature, and kB is the Boltzmann constant [14–22].
A closure relation connecting the 3D total and direct correlation functions complements
the 3D-RISM integral of Equation (1), providing a computational handle to integrate the
infinite chain of diagrams. The exact closure can be formally expressed as a series in
terms of multiple integrals of the combinations of the total correlation functions, which
is cumbersome, and in practice, is replaced with tenable approximations. For instance,
the KH closure approximation accounts, in a consistent manner, for both electrostatic and
non-polar features (i.e., associative and steric effects) of solvation in simple and complex
liquids, and has the form:

gγ(r) =

{
exp(−uγ(r)/(kBT) + hγ(r)− cγ(r)) for gγ(r) ≤ 1
1− uγ(r)/(kBT) + hγ(r)− cγ(r) for gγ(r) > 1

(2)

where uγ(r) is the 3D interaction potential between the whole solute and solvent site γ
specified by the molecular force field. The 3D-KH closure in Equation (2) couples, in a
nontrivial way, the so-called mean spherical approximation (MSA) applied to spatial regions
of solvent density enrichment gγ(r) > 1 and the hypernetted chain (HNC) one applied to
the regions of density depletion gγ(r) < 1. The 3D solvent site distribution function and its
first derivative are continuous at the joint boundary gγ(r) = 1 by construct. The 3D-RISM-
HNC theory is known to overestimate solvation structures in strongly associated systems,
thus imparting numerical instability and also diverging for strongly charged systems like
electrolytes in solution. On the other hand, the 3D-RISM-KH theory can handle all such
systems with ease. There are several other closure relations which have been developed
over the years but they are aimed at specific applications, lacking the generality of the KH
closure [46–49]. As a critical drawback, KH closure underestimates the height of strong
associative peaks. On the other side, it widens the peak to some extent, and so provides
the correct thermodynamics and solvation structure [50,51]. The site–site susceptibility of
solvent breaks up into the intra- and intermolecular terms,

χαγ(r) = ωαγ(r) + ραhαγ(r), (3)

where the normalized intramolecular correlation function ωαγ(r) represents the geom-
etry of solvent molecules. For rigid species with site separations lαγ, it has the form,
ωαγ(r) = δ(r− lαγ)/(4πl2

αγ) specified in the reciprocal k-space in terms of the zeroth-order
spherical Bessel function j0(x) as

ωαγ(r) = j0(klαγ), (4)

and hαγ(r) is the intermolecular radial total correlation function between solvent interaction
sites α and γ. The solvent site–site total correlation functions hαγ(r) in Equations (1) and (3)
are obtained in advance from the dielectrically consistent RISM theory [52] coupled with the
KH closure (DRISM-KH approach). It is applied to the bulk solution of a given composition,
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including polar solvent, co-solvent, electrolyte, and ligands at a given concentration. The
DRISM integral equation has the form [52]

h̃αγ(r) = ω̃αµ(r) ∗ cµν(r) ∗ ω̃νγ(r) + ω̃αµ(r) ∗ cµν(r) ∗ ρν h̃νγ(r), (5)

where cαγ(r) is the site–site direct correlation function of a bulk solvent, and both the
intramolecular site–site correlation functions ω̃αγ(r) and the total site–site correlation
functions h̃αγ(r) are renormalized via an analytical dielectric bridge correction, ensuring
all inter- and intra-species interactions in liquid state,

ω̃αγ(r) = ωαγ(r) + ραχαγ(r), (6)

h̃αγ(r) = hαγ(r)− χαγ(r). (7)

The renormalized dielectric correction has the following form in the reciprocal k-space [52]:

χαγ(k) = j0(kxα)j0(kyα)j1(kzα)hc(k)j0(kxγ)j0(kyγ)j1(kzγ), (8)

where j0(x) and j1(x) are the zeroth- and first-order spherical Bessel functions over the
positions of each atom rα = (xα, yα, zα) with a partial site charge qα of site α on species
s with respect to its molecular origin, where both sites α and γ are on the same species
s, and its dipole moment ds = ∑α∈s qαrα is oriented along the z-axis, ds = (0, 0, ds).
The renormalized dielectric correction (8) is nonzero only for polar solvent species of
sorbed electrolyte solution which possess a dipole moment and are responsible for the
dielectric response in the DRISM approach. The value of the envelope function hc(k) at
k = 0 determines the dielectric constant of the solution, and is assumed in the ae smooth
non-oscillatory form, quickly falling off at wavevectors k larger than those corresponding
to the characteristic size l of liquid molecules and hence, to the dielectric constant (ε) of
the solvent,

hc(k) = A exp
(
−l2k2/4

)
, (9)

and A =
1

ρpolar

(
ε

y
− 3
)

, (10)

A being the amplitude.
The form (8)–(10) applies to mixed solvents with the total number density of solution

polar species
ρpolar = ∑

s∈ polar
ρs (11)

and the dielectric susceptibility of the solution

y =
4π

9kBT ∑
s∈ polar

ρs(ds)
2. (12)

The parameter l in the dielectric correction (9) specifies the characteristic separation
from a liquid molecule, below which this correction is switched off so as not to distort the
short-range solvation structure. It can be chosen as l = 1 Å for a water solvent; however, the
value of l should be carefully chosen for solvents with a large molecular diameter.

The KH closure relation to the DRISM integral equations has the following form:

gαγ(r) =
{

exp(−uαγ(r)/(kBT) + hαγ(r)− cαγ(r)) for gαγ(r) ≤ 1
1− uαγ(r)/(kBT) + hαγ(r)− cαγ(r) for gαγ(r) > 1

. (13)

Notably, the 3D-RISM integral equation has an exact differential of the solvation free
energy for both the HNC and KH closures, allowing an analytical expression of Kirkwood’s
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thermodynamic integration that gradually switches the solute–solvent interaction on. The
solvation free energy of a molecule in multicomponent solvent that follows from the 3D-
RISM-KH integral Equations (1) and (2) is obtained in a closed analytical form as a single
integral of the 3D solvent site correlation functions:

µsolv = ∑
γ

∫
V

dr Φγ(r), (13a)

Φγ(r) = ργkBT
[

1
2

h2
γ(r)Θ(−hγ(r))− cγ(r)−

1
2

hγ(r)cγ(r)
]

, (13b)

where Θ(x) is the Heaviside step function. The integrand Φγ(r) in Equation (13a) can be
taken as the 3D-solvation free energy density arising due to all solvent–solute interactions.
The solvation free energy of the solute molecule ∆µ is obtained by summation of the partial
contributions over all solvent sites integrated over the whole volume. Other thermody-
namic quantities are derived from the solvation free energy (13) via differentiation. This
includes the solvation chemical potential which is decomposed into the energetic and
entropic components at a constant volume,

∆µ = ∆εuv + ∆εvv − T∆sV, (14)

where entropy at constant volume is

∆sV = − 1
T

(
∂∆µ

∂T

)
V

, (15)

the internal energy of the solute–solvent (“uv”) interaction is

∆εuv = kBT∑
γ

ργ

∫
dr gγ(r)uγ(r), (16)

and the remaining term ∆εvv gives the energy of solvent reorganization around the solute.
The partial molar volume of the solute macromolecule is obtained from the Kirkwood–Buff
theory [53] extended to the 3D-RISM formalism as [54,55]

V = kBTχT

(
1−∑

γ

ργ

∫
dr cγ(r)

)
, (17)

where χT is the isothermal compressibility of bulk solvent obtained in terms of the site–site
direct correlation functions of the bulk solvent as

ρkBTχT =

1− 4π∑
αγ

ρα

∞∫
0

r2dr cαγ(r)

−1

, (18)

where ρ = ∑s ρs is the total number density of the bulk solvent mixture of molecular species
s. To apply 3D-RISM-KH theory in calculating absolute solvation free energy, one has to
be careful, as the theory overestimates solvation by a large margin, although it produces
correct trends. To avoid overestimation, one can use the so-called universal correction (UC)
scheme [56]:

∆µcorrected = ∆µGF + a ∗ PMV + b. (19)

The chemical potential adjusted with the UC is obtained from the Gaussian Fluctuation
(GF) chemical potential, corrected with partial molar volume (PMV). The correlation
coefficients, a and b, in this expression are obtained from multiple linear regression analysis
carried out against benchmarking results. Such applications were reported recently [57,58].
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From a computational viewpoint, the most efficient way of solving the 3D-RISM-KH
equation is via the modified direct inversion in the iterative subspace (MDIIS) accelerated
numerical solver [59], a simple and less computer memory demanding protocol to solve
the 3D site direct correlation function for solvent–solute site–site interactions, to zero
the residuals of the equations, which are nonlocal functionals of 3D-DCF and arise via
a difference between the 3D-site distribution function generated from Equation (1) and
the closure relation. MDIIS is simple, robust, and stable, has relatively small memory
usage, and provides substantial acceleration with quasiquadratic convergence in the whole
range of root mean square residual. It reliably converges for complex charged systems
with strong associative and steric effects, which is challenging for 3D integral equations.
MDIIS is closely related to Pulay’s DIIS solver to accelerate and stabilize the convergence
of the Hartree–Fock self-consistent field equations [60]. Other similar algorithms include
the generalized minimal residual (GMRes) solver [61] which was also coupled with a
Newton–Raphson-like approach on a coarse grid [62], and is limited to the solute repulsive
core [63].

A direct improvement in the treatment of the required solvation shells for correct
3D-RISM-KH calculations was achieved by splitting the 3D-cubic box into a core region
encapsulating the excluded volume of the solute macromolecule, followed by about three
solvation shells around the solute and the remainder of the box region [64]. The core region
is built by analogy to solute cavity formation in the classical continuum models [65], via
rolling a solvent site around each solute site. Another recent advance in closure relations is
the Kobryn–Gusarov–Kovalenko closure, which is built on the KH closure as

gαγ(r) =

{
0 for gαγ(r) ≤ 1
1− uαγ(r)/(kBT) + hαγ(r)− cαγ(r) for gαγ(r) > 1

(20)

The performance of this newest closure relation has been under investigation for use
in various types of systems [66,67].

3. Electrical Double Layer in Nanoporous Materials

Electric double layers (EDLs) in nanoporous carbon electrodes are unlike those in
planar electrochemical capacitors because of the overlap of EDLs. At the inner surface
of nanopores, the EDL is distorted compared to a planar electrode, and has the specific
capacitance about 1–2 orders of magnitude less than that of a planar electrode. Further-
more, another EDL at the outer macroscopic surface of nanoporous material dramatically
contributes to the specific capacitance of nanoporous electrodes. Because of the interplay of
long-range electrostatic and short-range steric interactions and the chemical and mechanical
balance between the sorbed electrolyte solution and that in the bulk, consistent molecular
simulation of these systems is practically unfeasible. Conventional modeling either uses
analytical description and MD simulation for an EDL of finite size ions in slit-like pores with
no molecular solvent and chemical specificities [68], or runs an all-atom MD simulation of
ions and the solvent in confinement with simplified geometry [69].

The replica RISM-KH-VM (modified Verlet) theory comes from generalizing RISM
molecular solvation theory to solutions sorbed in disordered nanoporous material [32–37].
It makes predictive modeling of sorption and supercapacitance of electrolyte solutions in
functionalized nanoporous carbon electrodes feasible. In particular, it describes solvent-
specific wetting and water depletion in hydrophobic carbon nanopores, asymmetry in
solvation and adsorption of cations and anions, specific adsorption in functionalized
carbon nanopores, desalination of ions in hydrophobic nanopores, and the removal of ionic
impurities from an aqueous waste stream in a nanoporous electrosorption cell.

The replica formalism of statistical–mechanical, integral equation theoriy of quenched-
annealed systems treats “annealed” fluid with equilibrium temperature T1 (species 1),
sorbed in a porous matrix of “quenched” particles with a spatial distribution corresponding
to an equilibrium ensemble with temperature T0 (species 0). The mean free energy of
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the sorbed annealed fluid is obtained as a statistical average of the free energy with the
canonical partition function Z1(q0) of the fluid sorbed in the matrix with a particular spatial
configuration of quenched particles q0 over the ensemble of all realizations of matrix
configurations q0,

A1 = Aid
1 − kBT1〈ln Z1(q0)〉q0

, (21)

where Aid
1 is the ideal gas free energy. The statistical average of a logarithm is not amenable

to standard evaluation and is obtained by using the so-called replica identity, similar to the
theory of spin glasses, that relates the logarithm to the analytical continuation of moments
Zs as follows: ln Z1 = lim

s→0
dZs/ds. The statistical average of the moments is given by

the equilibrium canonical partition function of a fully annealed (s + 1)-component liquid
mixture of matrix species 0 and s equivalent replicas of fluid species 1 not interacting with
each other. The average free energy of the annealed fluid is obtained, assuming no replica
symmetry breaking in the analytical continuation of the annealed replicated free energy
Arep(s),

A1 = lim
s→0

dArep(s)
ds

. (22)

The replica Ornstein–Zernike integral equations for a quenched-annealed atomic sys-
tem [70–72] were extended to the replica DRISM integral equations for annealed associating
molecular liquid sorbed in a quenched matrix [33–37],

h00
αγ(r) = ω00

αµ(r) ∗ c00
µν(r) ∗ω00

νγ(r) + ω00
αµ(r) ∗ c00

µν(r) ∗ ρ0
νh00

νγ(r), (23a)

h10
αγ(r) = ω̃11

αµ(r) ∗ c10
µν(r) ∗ω00

νγ(r) + ω̃11
αµ(r) ∗ c10

µν(r) ∗ ρ0
νh00

νγ(r) + ω̃11
αµ(r) ∗ c(c)µν (r) ∗ ρ1

νh10
νγ(r), (23b)

h01
αγ(r) = ω00

αµ(r) ∗ c01
µν(r) ∗ ω̃11

νγ(r) + ω00
αµ(r) ∗ c00

µν(r) ∗ ρ0
νh01

νγ(r) + ω00
αµ(r) ∗ c01

µν(r) ∗ ρ1
ν h̃(c)νγ (r), (23c)

h̃11
αγ(r) = ω̃11

αµ(r) ∗ c11
µν(r) ∗ ω̃11

νγ(r) + ω̃11
αµ(r) ∗ c10

µν(r) ∗ ρ0
νh01

νγ(r) + ω̃11
αµ(r) ∗ c(c)µν (r) ∗ ρ1

νh10
νγ(r),

+ω̃11
αµ(r) ∗ c(b)µν (r) ∗ ρ1

ν h̃(c)νγ (r)
(23d)

h̃(c)αγ (r) = ω̃11
αµ(r) ∗ c(c)µν (r) ∗ ω̃11

νγ(r) + ω̃11
αµ(r) ∗ c(c)µν (r) ∗ ρ1

ν h̃(c)νγ (r), (23e)

where ρ1
γ and ρ0

γ are the site number densities of liquid species and matrix nanoparticles,

hij
αγ(r)‘ and cij

αγ(r) are the replica total and direct correlation functions between interaction
sites α and γ of species i and j (1 for liquid molecules and 0 for matrix nanoparticles).
The replica liquid–liquid total and direct correlation functions have the connected (c) and
disconnected, or blocking (b) portions,

h̃11
αγ(r) = h̃(c)αγ (r) + h(b)αγ (r), (23f)

c11
αγ(r) = c(c)αγ (r) + c(b)αγ (r). (23g)

The connected correlations marked with superscript follow from the correlations between
the same replica of the liquid, and the blocking ones from those between different replicas
of the liquid in the analytical continuation limit s→ ∞ . The blocking correlations are a
subset of liquid–liquid Mayer diagrams with all paths between two root vortices passing
through at least one field vortex of matrix that are completely blocked by matrix vortices
(the indirect, matrix-mediated part of the liquid–liquid correlations). The remaining part is
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the connected liquid–liquid correlations. The KH closure is applied to the matrix–matrix,
liquid–matrix, and liquid–liquid correlations,

gij
αγ(r) =

exp
(

dij
αγ(r)

)
for dij

αγ(r) ≤ 0

1 + dij
αγ(r) for dij

αγ(r) > 0,

dij
αγ(r) = −uij

αγ(r)/kBT + hij
αγ(r)− cij

αγ(r)

(24)

whereas the modified Verlet closure is applied to the blocking part

g(b)αγ (r) = h(b)αγ (r) + 1 = exp
(

h(b)αγ (r)− c(b)αγ (r) + b(b)αγ (r)
)

, (25a)

b(b)αγ (r) = −1
2

(
t(b)αγ (r)

)2

1 + amax
(

t(b)αγ (r), 0
) , (25b)

The VM bridge correction (25b) is expressed in terms of the nodal correlation function
t(b)αγ (r) = h(b)αγ (r)− c(b)αγ (r), with the parameter a = 0.8 same as in the original Verlet cor-
rection. The blocking correlation closure (25) does not have an interaction potential, as
different replicas of fluid do not interact with each other in the limit s→ ∞ . This blocking
approximation (25) adequately represents nonlinear blocking correlations in polar solvents
as well as in electrolyte solutions in nanoporous materials, either neutral or charged. With
the analytical treatment of the electrostatic asymptotics is similar to the bulk DRISM-KH
Equations (3)–(13), the replica DRISM-VM integral equations are converged using the
MDIIS accelerated numerical solver [59],

The excess chemical potential of liquid sorbed in disordered nanopores is decomposed
into the host matrix contributions from to the liquid–matrix (ij = 10) correlations and the
sorbed liquid part from the liquid–liquid (ij = 11) correlations, minus an additional term
from the blocking (b) correlations [33,34],

∆µ1
s = ∆µ10

s + ∆µ11
s − ∆µ

(b)
s . (26)

Like Equations (13)–(18), the replica DRISM integral Equation (23) with the KH clo-
sure (24) yields the terms of the excess chemical potential in a closed analytical form of
the liquid–matrix and liquid–liquid correlation functions for liquid (j = 1) and matrix
(j = 0) species. The blocking correlations term in the chemical potential are obtained from
the replica DRISM Equations (23e)–(23g) with the VM closure (25) using thermodynamic
integration as

∆µ
(b)
s = kBT ∑

αγ∈1
ρ1

α4π
∫

r2dr
[

1
2

(
h(b)αχ (r)

)2
− 1

2
h(b)αχ (r)c(b)αχ (r)− c(b)αχ (r) +

(
h(b)αχ (r) + 1

)
b(b)αχ (r)− s(b)αχ (r)

]
, (27)

with the star function derived assuming unique functionality of the correlations [33]

s(b)αγ (r) =

−
1

2a3

[
ln
(

1 + at(b)αγ (r)
)
− at(b)αγ (r) + 1

2

(
at(b)αγ (r)

)2
]

t(b)αγ (r)

h(b)αγ (r)
for t(b)αγ (r) > 0.

− 1
6 t(b)αγ (r)h(b)αγ (r) for t(b)αγ (r) ≤ 0

(28)

The compressibility and other thermodynamic derivatives of the sorbed annealed
solution have the exact analytical forms of the connected terms of the correlations.

An EDL forms in the electrolyte solution sorbed at the nanopores surface even in the
absence of external electric charge because of the orientation of polar solvent molecules at
the surface of the nanopores as well as the asymmetry of the cationic and anionic density
distributions. For interaction site charges q0

γ of chemical functional groups grafted on the
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surface of matrix nanoparticles, the statistical charge density distribution τ0
c of interaction

site charges q1
γ of sorbed solution around a matrix nanoparticle is

τ0
c = ∑

f∈0
q0

f ρ0
f g00

c f (r) + ∑
γ f∈0

q1
γρ1

γg01
cγ(r). (29)

where matrix nanoparticles and chemical functional groups grafted on the nanoparticles
surface are of sort c ∈ 0 and f ∈ 1, respectively.

The statistical charge density distribution τ0
c corresponds to the statistically averaged

full local electrostatic potential ψ0
c (r) around a matrix nanoparticle c, according to the

Poisson equation:
∇2ψ0

c (r) = −4πτ0
c (r). (30)

This local electrostatic potential also includes the term from an externally induced charge
on the matrix nanoparticle,

φ0
c (r) = ψ0

c (r) +
q0

c

max(r, R0
c )

. (31)

The external charge density
qex = ∑

c∈0
q0

c ρ0
c (32)

on the electrode as well as the opposite external charge −qex on the other electrode of the
supercapacitor cause separation of electrolyte cations and anions that diffuse across the
electrode separator to the electric double layers in their nanopores. The diffusion occurs
until the ionic concentration bias in each electrode satisfies the condition of electroneutrality
in the whole system,

qex + ∑
f

q0
f ρ0

f + ∑
γ

q1
γρ1

γ = 0. (33)

The diffusion exchange between the electrodes and bulk solution bath adjust the bias
between the densities of cations and anions until they satisfy electroneutrality in each
electrode. For connected carbon nanospheres of sorts α and sizes R0

c , the external charge
qex is distributed among charges q0

c on each sort of nanosphere, provided the electrostatic
potential is the same inside all carbon nanospheres,

φc(qex) ≡ φ0
c (r < R0

c ; qex) for all c ∈ 0, (34)

On the other hand, the electrostatic potential far from each nanosphere of sort c gives the
average electrode potential with both the carbon nanospheres and sorbed solution parts,

φav(qex) ≡ φ0
c (r = ∞; qex) for all c ∈ 0. (35)

The electrostatic potential of the carbon electrode is given by the potential of each
carbon sphere φc(qex). The potential change from the carbon nanoparticle to the solution
outside the electrode consists of the following parts: (i) voltage across the electric field
from φc(qex) at the nanopores’ intrinsic surface to the average level φav(qex) of all other
carbon nanoparticles in the nanoporous material, and (ii) via the electric field φexEDL of the
external EDL at the macroscopic surface of the electrode to the solution bulk outside the
electrode. The “zero” potential level is therefore shifted from the potential in vacuum by
the external EDL φex EDL.

For sorbed species s with density ρs, the chemical potential comprises the ideal gas term
of spheres with molecular weight ms, ∆µid

s = kBT ln(ρsΛs), where Λs =
√

h2/(2πmskBT)
is the de Broglie thermal wave length, the excess chemical potential ∆µs for liquid–liquid
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and liquid–matrix interactions in the nanopores, and the electrostatic potential of species
charges qs in the average electrostatic field between the electrodes,

µs = µid
s + ∆µs + qsφav. (36)

These chemical potential terms arise, respectively, from the osmotic effect, the interaction
in the nanopores, and the “zero” level of the nanoporous electrode relative to the vacuum
potential following from the Nernst equation [73].

Inside a charged electrode, the excess chemical potentials of ionic species strongly
differ from the bulk solution, which causes diffusion of ions across the separator to have
the electric field of ionic dipoles at the electrodes boundaries counterbalance the difference
of the “interior” chemical potential µid

s + ∆µs of electrodes I and II, and to equalize the
chemical potential in the electrodes, µI

s = µII
s . The bias between the statistically averaged

“zero” levels of the two electrodes φII
av(qex) and φI

av(−qex) with opposite external charges
±qex is obtained as

qs

(
φII

av(qex)− φI
av(−qex)

)
= kBT ln(ρI

s/ρII
s ) + ∆µI

s(−qex)− ∆µII
s (qex). (37)

The same bias of the electrostatic potential levels φII
av − φI

av must satisfy Equation (37)
for all solution species. Diffusion of the ionic species to the corresponding electrode with
the lower chemical potential occurs due to a difference between the bias values necessary
to counterbalance the ‘interior” chemical potential µid

s + ∆µs until the chemical equilibrium
(37) is satisfied for both cations and anions. Additionally, neutral solvent molecules diffuse
between the two electrodes until their osmotic term and excess chemical potentials satisfy
the bias condition (37), which reduces to the equality of their “interior” parts µid

s + ∆µs.
The supercapacitor device voltage obtained by summing up the statistically averaged

electrostatic potential changes across the device consists of the potential changes in the
electrode I intrinsic EDL φI

av(−qex)− φI
c(−qex), from the “zero” level of electrode I to the

solution bulk and then to the “zero” level of electrode II φII
av(qex) − φI

av(−qex), and in
the electrode I intrinsic EDL φII

av(qex) − φI
av(qex). With the relation (37) for the average

electrostatic potentials in terms of the chemical potentials and number densities of sorbed
ions, the supercapacitor voltage assumes the form

U(qex) =
(

φI
av − φI

c

)
−
(

φII
av − φII

c

)
+

1
qs

(
kBT ln(ρI

s/ρII
s ) + ∆µI

s − ∆µII
s

)
. (38)

The chemical equilibrium conditions (37) have to be converged for fluid densities ρs, with
the replica DRISM-KH-VM integral Equations (23)–(25) being converged at each outer
loop of iterations for ρs. This is followed by calculating the potential changes φI,II

av − φI,II
c at

converged ρs by solving the Poisson equation (30).
The purification efficiency relation for the electrosorption cell which holds sorbed

electrolyte with ionic concentrations inside electrodes I and II at a much lower electrolyte
concentration ρblk

s and excess chemical potential ∆µblk
s in the bulk solution efflux is obtained

from the chemical equilibrium condition

ρblk
s
ρI

s
= exp

(
− 1

kBT

(
∆µblk

s − ∆µI
s(−qex)− qsφI

av(−qex)
))

for qs > 0 (cations) , (39a)

ρblk
s
ρII

s
= exp

(
− 1

kBT

(
∆µblk

s − ∆µII
s (qex)− qsφII

av(qex)
))

for qs < 0 (anions) . (39b)

Select applications of the developments in the 3D-RISM-KH molecular solvation theory are
described briefly in the following sections.
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4. (Macro)Molecular Simulations with the 3D-RISM-KH Theory

The system size and associated intricacies in the material and biological sciences
requires a complex combination of scales for correctly ascribing structure and property
combination. The use of quantum mechanics is simply impossible because of the large num-
ber of primitive functions needed to construct a wave function for the system. Molecular
dynamics simulations, on the other hand, are limited by the timescale. The multiscale ap-
proach to handling chemical problems spanning across different size and time domains has
been addressed in the literature and specific methods have been developed to address such
issues. The applicability of the 3D-RISM-KH molecular solvation theory across multiple
such domains have been demonstrated via effectively coupling this theory with electronic
structure calculation algorithms and MD-engines (Figure 1) [74,75].
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Figure 1. Multiscale methods framework with the 3D−RISM−KH molecular solvation theory.

Electrolyte solutions are of paramount interest in the fields of energy as well as
health sciences. The traditional NaCl-aqueous solution was analyzed using the 3D-RISM-
KH molecular solvation theory to understand the solvation structure for a wide range
of concentrations; as a benchmark test set for the validity of the theory at hand [20,21].
Analysis of the 3D site distributions of water oxygen (O) and hydrogen (H) around a pair
of Na+ and Cl− ions at infinite dilution presents the solvation structure of the ions correctly
with bridging water molecule(s) between the ions embedded in a weak second solvation
shell. The features of the H-site of the water molecule show interaction with the chloride
ion as well as with the outer solvation shell while positioned away from the sodium ion.
This corresponds to water dipole-like water oriented around a cation and hydrogen-bonded
to an anion. Water molecules form a bridge of strongly associated water molecules located
in a ring between the ions, a situation known as contact ion pair arrangement. At a high
salt concentration, many salt bridges form in addition to water hydrogen bonding, and
like ion pairs stabilize in both contact ion pair (CIP) and solvent-separated ion pair (SSIP)
arrangements. In particular, the Cl−–Cl− ion pair at a high concentration in water is
bridged by several Na+ ions and waters, and forms a cluster.

The replica RISM-KH-VM calculations for KOH aqueous electrolyte solution in a
nanoporous carbon supercapacitor that we carried out in this work showed that the solva-
tion structure and thermodynamics of this device are dramatically different from planar
electrode–electrolyte interfaces. Figure 2 presents the solvation structure of the aqueous
solution of KOH electrolyte in the nanoporous carbon electrode with a positive, neutral,
and negative charge. The external charge strongly changes the radial distribution func-
tions (RDFs) between carbon nanospheres and ions, attracting counterions and repelling
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co-ions. On the other hand, the RDFs between carbon nanoparticles and water oxygen and
hydrogen almost do not change with the nanoporous carbon charge. Figure 3 shows the
electrostatic potential in the area from the surface of a carbon nanoparticle, through the
intrinsic ELD at the nanoparticle surface, and to the bulk value φC inside the nanoporous
electrode averaged over the nanoporous carbon material. It is obtained from the Poisson
equation (Equation (30)) with the charge density taken from Figure 2. Inside the conducting
carbon nanoparticle, r < R0

c , the electrostatic potential levels out. The external charge of
carbon nanoparticles drives the electrostatic potential run in the first and second solvation
shells near the nanoparticle surface. Because of the steric constraints, there are no solutions
charges in the Stern layer, and only the Coulomb potential causes the slope of the potential
curves for r > R0

c near the carbon nanoparticle surface. Next comes the surface dipole
appearing due to water hydrogens located closer to the nanoparticle surface than water
oxygens, which causes the potential drop, and due to OH− ions located closer to the surface
than Li+ ions, which causes the subsequent potential rise. The peaks of the electrostatic
potential in the first and second solvation layers constitute the outer Helmholtz layer. Due
to the electric charge of carbon nanoparticles, the electrostatic potential oscillates with a
period of 12 Å, which is close to the size of carbon nanoparticles, slowly diminishing with
distance. That includes both the nanoparticle diffuse layer and EDL statistical average
around other nanoparticles closely packed in the nanoporous carbon. The outer Helmholtz
layer and further oscillations almost entirely cancel out the potential change of the Stern
layer. These oscillations come mainly from the ionic cloud of the two solvation shells that
screen the external charge of the carbon nanoparticle, with OH− ions for positive and K+

ions for negative external charge. The latest model picks up chemical potential changes for
both K+ and OH− ions upon the introduction of the EDL in the computation.
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Figure 2. Solvation structure of the aqueous solution of KOH electrolyte sorbed in the nanoporous
carbon electrode. Specific charge of the nanoporous electrode: qex = 0 (solid black lines);
qex = +80 [C/cm3] (long-dashed red lines); qex = −80 [C/cm3] (short-dashed blue lines); RDFs
of water O and H sites, and of K+ and OH− ions around carbon nanoparticles.
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Figure 3. Statistically averaged electrostatic potential φ0(r) around nanoparticles in carbon
nanoporous electrode, with respect to the “zero” level φC. The sorbed solution is in equilibrium with
the bulk ambient aqueous solution of KOH electrolyte at concentration 120 ppm. Specific charge of
the nanoporous electrode: qex = 0 (black line); qex = +16 [C/cm3] (yellow line); qex = +80 [C/cm3] (red
line); qex = −16 [C/cm3] (green line); qex = −80 [C/cm3] (blue line). Inset: statistical–mechanical aver-
age (red circle and distance vector) around a carbon nanoparticle (red ball) over carbon nanoparticles
(black balls) and nanopores (white voids).

Figure 4 illustrates a diagram of the distributions of Li+ and K+ cations as well
as OH− anions at the nanoporous carbon electrode surface. The dipole electric field
formed by the solution at the electrode macroscopic boundary due to the chemical equi-
librium conditions (37) shifts the bulk potential level qexφC in the nanopores. The
difference between the “interior” part of the of ions in the nanoporous electrodes
kBT ln(ρsΛs) + ∆µs is counterbalanced by an additional EDL appearing at the macroscopic
boundaries of the two electrodes. This brings about a major portion of the supercapaci-
tor voltage U(qex) caused by the chemical equilibrium between the solutions inside the
nanoporous electrodes and the bulk solution outside them [75]. For nanoporous carbon in
an ambient aqueous solution of KOH electrolyte at a concentration of 1M, it was found that
the electrochemical mechanism of the supercapacitor is driven mostly by the Nernst–Planck
equation, determining the chemical balance of sorbed ions in the whole electrode rather
than just the EDL potential change at a planar electrode [35–37]. The purification efficiency
of a nanoporous electrosorption cell (39) is determined with the same molecular forces [69].
The sorption capacity and specific capacitance are an interplay of the EDL potential change
in the Stern layer at the nanoparticles’ surface and the Gouy–Chapman layer statistically
averaged over the nanopores, the osmotic term coming from the difference of the ionic
concentrations in the nanopores and in the bulk electrolyte solution, and the solvation
chemical potentials of ions in the nanopores. Chemical specificities of ions, solvent, surface
functional groups, and steric effects for sorbed ions strongly affect their solvation chemical
potentials in nanopores. Note that the specific capacitance is strongly affected by enlarged
effective sizes of sorbed ions, with strong implications on supercapacitor devices. A major
factor affecting the specific capacitance is that two extra EDLs at the macroscopic bound-
aries of the nanoporous electrodes offset the differences of their chemical potentials from
the solution bulk. This substantially changes the supercapacitor voltage.
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Figure 4. Illustration of Li+ and K− cations and OH− anions in aqueous solution in a nanoporous
carbon electrode.

Another popular application of the 3D-RISM-KH molecular solvation theory is the
calculation of solvation free energy and, hence, molecular partition coefficients. The
successful application has been demonstrated in predicting solvation free energies in
water, cyclohexane, and n-octanol solvents, using proper benchmark datasets. For all these
solvents, a universal correction scheme is adopted for the final prediction of solvation free
energy [57,58,76,77].

The formation of nanostructures at the interface of biology and chemistry is aggregation-
driven by the so-called hydrophobic interaction. The best example of the 3D-RISM-KH
theory addressing such issue is the prediction of such aggregates in the mixture of water
with tert-butyl alcohol [78,79]. The solvation structure of this chemical system changes
with the concentration of tert-butyl alcohol in water, varying from infinite dilution to pure
alcohol, as first a single alcohol molecule gets encaged in a tetrahedral hydrogen bonding
network of water at infinite dilution, changing subsequently to micromicelles with a size of
four to six alcohol units incorporated in the “head-to-head” arrangement in a hydrogen
bonding cage of water with an increasing alcohol molar percentage, subtly disturbing
the tetrahedral hydrogen bonding network of water, and finally giving away to a zig-zag
network of alcohol aggregates with water embedded in it for a very high concentration
of the alcohol. The RISM-KH molecular solvation theory predicted both the structure
and thermodynamics of these alcohol–water mixtures in full agreement with experiment,
providing thermodynamic properties of the systems like compressibility dependences on
concentration and temperature as a function of temperature and pressure, the isosbestic
point, and the minimum showing formation of alcohol micromicelles.
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The macromolecular hierarchical self-assembly in the solution of the rosette nanos-
tructures was analyzed via the 3D-RISM-KH molecular theory of solvation providing a
molecular level description of wetting of the nanotube surface and channel by water, which
imparts stability to the entire assembly. It predicts the molecular mechanism supramolec-
ular chirality driven by a solvent in helical rosette nanotubes. For instance, structural
solvent molecules localized in the pockets behave as molecular switches that result in the
formation of a right-hand supramolecular helix in water as a thermodynamically controlled
product in the nanotube formation; whereas a left-hand supramolecular helix is formed in
methanol because of a kinetic barrier for the right-hand helix when initiating self-assembly
in methanol, which is kinetic formation, in agreement with [80,81].

In biological systems, the application of the 3D-RISM-KH molecular solvation theory
dates back to the inception of the KH closure. The applications range from protein–ligand
binding, binding site mapping, molecular docking, and fast simulation techniques for
protein folding. In this theory, the potential of mean force is defined as a 3D map of the
effective potential between solvent species. The solute biomolecule determines the binding
strength and most probable locations of structural solvent molecules, averaged over the
statistical mechanical ensemble of the system [32]. This mixture includes ions, cosolvent,
and ligand(s), along with the solvent [82]. Applying this protocol, one ends up with a
novel method of mapping multiple probes on a receptor surfaces useful for protein–ligand
binding and for fragment-based drug design.

It was realized in the ligand mapping based on 3D-RISM theory, or 3D-RISM-LM
algorithm [39,83,84], and also in the ligand docking algorithm (3D-RISM-Dock) [85] imple-
mented in the AutoDock package. It was validated by experiments with the modes and
free energy of the binding of the antiprion compound, GN8, to mouse PrP protein and of
thiamine to the extra-cytoplasmic-thiamine-binding lipoprotein, MG289 [86].

The Langevin approach includes artificial friction and random forces to stabilize the
solutions systems [87–91]. The target temperature is not assured, even though these forces
satisfy the fluctuation–dissipation theorem, and a large viscosity coefficient can diverge
the system from the real canonical state. Additionally, there is no conserved property
in Langevin dynamics, which makes an analysis of the trajectories problematic. This
drawback is overcome in the Nosé–Hoover (NH) chain method [92–95], which reproduces
the canonical behavior by including extra variables in phase space that are associated with
a thermostat. Its chain counterparts ensure that the ergodicity, and the temperature is
controlled without using random numbers.

Quasidynamics is a multi-time-step molecular dynamics (MTS-MD), or optimized
isokinetic Nosé–Hoover (OIN) thermostat, of biomolecules steered with 3D-RISM-KH
mean solvation forces at long outer time steps (picoseconds) and extrapolated forward
using generalized solvation force extrapolation (GSFE) at short inner time steps (femtosec-
onds) [38]. It changed from the reference system propagator algorithm (RESPA) run with
the microcanonical ensemble, to the isokinetic Nose–Hoover (NH) chain RESPA (INR) with
heat baths coupled individually to each degree of freedom [96]. Next, MD/3D-RISM was
spread to the canonical ensemble by employing the Langevin (LN) thermostat [97]. In the
most advanced formulation, the canonical-isokinetic NH chain method consists of grouped
degrees of freedom associated with a chain of individual thermostats with a given length
and relaxation time. This leads to the OIN method with optimized and increased efficiency
of the integration of motion.

Figures 5–7 show the tertiary structures of miniprotein 1L2Y and protein G, simu-
lated by the OIN/3D-RISM-KH/GSFE quasidynamics [38]. This quasidynamics keeps the
secondary and tertiary structures at huge outer time steps of about 1 ps. In this excellent
result with a number of numerical techniques used, the approximate character and the
extrapolation of the force fields, and the 3D-RISM-KH integral equations are the main
sources of possible uncertainties. Compared to the experiment, the tertiary structures of
protein G show that these uncertainties do not affect the ability of the method to reproduce
the conformational behavior. There is some difference between the theoretical results and
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experiment, as they correspond to liquid and crystal states, respectively. For comparison,
the folded conformations obtained in explicit solvent conventional MD simulations are
very similar to the quasidynamics results (the right parts of Figures 6 and 7).
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The up-to-100-fold time scale compression in the OIN/3D-RISM-KH/GSFE quasi-
dynamics of protein G in water using 3D-RISM-KH mean solvation forces significantly
accelerates the productivity of protein conformational sampling compared to experimental
dynamics as well as conventional MD with an explicit solvent [38]. In our quasidynamics,
folding miniprotein 1L2Y from a denatured state took 60 ns, while the folding time in
explicit-solvent MD was similar to 4−9 µs in experiment.

Accurate calculation of equilibrium and conformational properties of biomolecules in
solution can be performed using the stabilizing effect of an OIN thermostat in quasidynam-
ics OIN/3D-RISM-KH/GSFE simulations with gigantic outer time steps of picoseconds.
With this new protocol, one can sample the phase space for rare statistical events, including
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the exchange and localization of solvent and ligand molecules in pockets and at the bind-
ing sites of biomolecules. This is distinct from explicit solvent MD, which involves huge
computational time in such cases.

5. Conclusions

Nanoscale processes are very different from the macroscopic laws in continuous media,
and predictive modeling has to adapt to the needs of coupling different techniques spanning
over different time steps. It is therefore necessary to use multiscale methods that couple:
(i) electronic structure theories for building blocks, (ii) molecular dynamics simulations
for characteristic aggregates, (iii) statistical–mechanical theories for large assemblies of
the aggregates and for mean properties over proper size and time scales and macroscopic
properties, and finally, (iv) molecular solvation theory to address the issues related to
solvation. A powerful platform to predict the solvation structure and thermodynamics of
complex chemical and biomolecular systems in real-life solutions is offered by the integral
equation theory of molecular liquids based on the first principles of statistical mechanics.
An essential part of the multiscale methodology is 3D-RISM-KH molecular solvation theory,
which operates, rather than with the trajectories of molecules, with their spatial distributions
via analytical summation of the free energy diagrams. This yields the solvation structure
and thermodynamics in the statistical–mechanical ensemble. 3D-RISM-KH molecular
theory of solvation has been coupled in a self-consistent field description with ab initio
CASSCF, Kohn–Sham DFT, and orbital-free embedded (OFE) DFT quantum chemistry
methods [98–102]. 3D-RISM-KH molecular solvation theory self-consistently coupled with
Kohn–Sham DFT in the Amsterdam Density Functional (ADF) package [45,103,104] is also
implemented in the Software for Chemistry & Materials suite [105].

For biomolecular simulations, this theory has been coupled with multiple time step
molecular dynamics (MTS-MD) steered by 3D-RISM-KH-effective solvation forces, based
on a novel algorithm of the optimized isokinetic Nosé–Hoover chain (OIN) thermostat and
generalized solvation force extrapolation (GSFE) at short inner time steps. In the energy
application, the high specific capacitance of the electric double-layer (EDL) supercapacitor
with nanoporous materials has been explored with a new theoretical model, yielding
theoretically significant results for aqueous potassium hydroxide electrolyte on a carbon
nanoshpere matrix. This new model is based on chemical potentials of solvated ions in
nanoporous confinement, bringing about two extra EDLs at the outer boundaries of the
nanoporous electrodes to offset the chemical potential difference between the electrodes
and solution bulk, which substantially contribute to the supercapacitor voltage. The
present status of the 3D-RISM-KH molecular solvation theory has a very broad scope of
application from a single molecule in solution to biomolecules in a cellular condition and
to nanomaterials in a laboratory setup. Further progress is on the way to increase the
scalability of the computational algorithms over various computing architectures.
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