Pumped Thermal Energy Storage Technology (PTES): Review
Abstract
:1. Introduction
2. PTES Historical Background
3. PTES Thermodynamic Cycles
3.1. Joule–Brayton PTES Thermodynamic Cycle
3.2. Conventional Rankine Cycles
3.3. The Transcritical Rankine Cycle
4. Analysis and Performance Enhancement of PTES
5. Summary of Literature Review PTES
6. Conclusions
- According to the latest research and studies, Pumped Thermal Energy Storage (PTES) could achieve round-trip efficiency of 60–65% for a system capable of storing 600 kWh of electricity.
- PTES uses a theoretically reversible thermodynamic cycle involving compression and expansion stages with constant pressure heat addition and rejection to hot and cold thermal stores.
- Energy storage round-trip efficiency largely depends on the isentropic efficiencies of the compression and expansion equipment, the thermal effectiveness of the thermal stores, the presence of circuit pressure drops, heat leaks to and from the system, and electrical machine efficiencies.
- PTES could offer a viable large-scale, long-duration energy store.
- The Rankine PTES system has never been built as a standard layout. Accordingly, it is imperative that research efforts be directed towards demonstrating the results derived from simulations.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- International Energy Agency. Global Energy Review 2021—Analysis—IEA. 2021. Available online: https://www.iea.org/reports/global-energy-review-2021/renewables (accessed on 11 May 2023).
- Rabi, A.M.; Radulovic, J.; Buick, J.M. Comprehensive Review of Compressed Air Energy Storage (CAES) Technologies. Thermo 2023, 3, 104–126. [Google Scholar] [CrossRef]
- Aneke, M.; Wang, M. Energy storage technologies and real life applications—A state of the art review. Appl. Energy 2016, 179, 350–377. [Google Scholar] [CrossRef] [Green Version]
- Borri, E.; Tafone, A.; Romagnoli, A.; Comodi, G. A review on liquid air energy storage: History, state of the art and recent developments. Renew. Sustain. Energy Rev. 2021, 137, 110572. [Google Scholar] [CrossRef]
- Ge, Y.; Zhao, Y.; Zhao, C. Transient simulation and thermodynamic analysis of pumped thermal electricity storage based on packed-bed latent heat/cold stores. Renew. Energy 2021, 174, 939–951. [Google Scholar] [CrossRef]
- Gallo, A.B.; Simõões-Moreira, J.R.; Costa, H.K.M.; Santos, M.M.; Moutinho dos Santos, E.M. Energy storage in the energy transition context: A technology review. Renew. Sustain. Energy Rev. 2016, 65, 800–822. [Google Scholar] [CrossRef]
- Petrollese, M.; Cascetta, M.; Tola, V.; Cocco, D.; Cau, G. Pumped thermal energy storage systems integrated with a concentrating solar power section: Conceptual design and performance evaluation. Energy 2022, 247, 123516. [Google Scholar] [CrossRef]
- Mazzucco, G.; Xotta, G.; Salomoni, V.; Giannuzzi, M.; Maiorana, C. Solid thermal storage with PCM materials. Numerical investigations. Appl. Therm. Eng. 2017, 124, 545–559. [Google Scholar] [CrossRef]
- Benato, A.; Stoppato, A. Pumped Thermal Electricity Storage: A technology overview. Therm. Sci. Eng. Prog. 2018, 6, 301–315. [Google Scholar] [CrossRef]
- Frate, G.F.; Ferrari, L.; Desideri, U. Energy storage for grid-scale applications: Technology review and economic feasibility analysis. Renew. Energy 2021, 163, 1754–1772. [Google Scholar] [CrossRef]
- Steinmann, W.D.; Jockenhöfer, H.; Bauer, D. Thermodynamic Analysis of High-Temperature Carnot Battery Concepts; Wiley-VCH Verlag GmbH & Co.: Stuttgart, Germany, 2020. [Google Scholar]
- Steinmann, W.-D.; Bauer, D.; Jockenhöfer, H.; Johnson, M. Pumped thermal energy storage (PTES) as smart sector-coupling technology for heat and electricity. Energy 2019, 183, 185–190. [Google Scholar] [CrossRef]
- Jockenhöfer, H.; Steinmann, W.-D.; Bauer, D. Detailed numerical investigation of a pumped thermal energy storage with low temperature heat integration. Energy 2018, 145, 665–676. [Google Scholar] [CrossRef]
- Fritz, M. Thermodynamic Energy Storage Method. U.S. Patent 1,979,393, 6 November 1934. [Google Scholar]
- Howes, J. Concept and Development of a Pumped Heat Electricity Storage Device. Proc. IEEE 2012, 100, 493–503. [Google Scholar] [CrossRef]
- Cahn, R.P.; Nicholson, E.W. Thermal Energy Storage by Means of Reversible Heat Pumping Utilizing Industrial Waste Heat. U.S. Patent 4,110,987, 5 September 1978. [Google Scholar]
- Smith, E.M. Storage of Electrical Energy Using Supercritical Liquid Air. Proc. Inst. Mech. Eng. 1977, 191, 289–298. [Google Scholar] [CrossRef]
- Chen, H.; Ding, Y.; Peters, T.; Berger, F. Method of Storing Energy and Cryogenic Energy Storage System. U.S. Patent 2016/0178129 A1, 23 June 2016. [Google Scholar]
- Morgan, R.; Nelmes, S.; Gibson, E.; Brett, G. Liquid air energy storage—Analysis and first results from a pilot scale demonstration plant. Appl. Energy 2014, 137, 845–853. [Google Scholar] [CrossRef]
- McTigue, J. Analysis & Optimization of Thermal Energy Storage. Doctoral Dissertation, Cambridge University Engineering Department, Cambridge, UK, 2016. [Google Scholar] [CrossRef]
- Park, J.-K.; Ro, P.I.; Lim, S.D.; Mazzoleni, A.P.; Quinlan, B. Analysis and Optimization of a Quasi-Isothermal Compression and Expansion Cycle for Ocean Compressed Air Energy Storage (OCAES). In Proceedings of the 2012 Oceans, Hampton Roads, VA, USA, 14–19 October 2012; pp. 1–8. [Google Scholar] [CrossRef]
- Meli, P. A Tale of Fire and Ice. MAN Energy Solutions. Available online: https://www.man-es.com/discover/a-tale-of-fire-and-ice (accessed on 3 May 2023).
- Albert, M.; Ma, Z.; Bao, H.; Roskilly, A.P. Operation and performance of Brayton Pumped Thermal Energy Storage with additional latent storage. Appl. Energy 2022, 312, 118700. [Google Scholar] [CrossRef]
- McTigue, J.D.; White, A.J.; Markides, C.N. Parametric studies and optimisation of pumped thermal electricity storage. Appl. Energy 2015, 137, 800–811. [Google Scholar] [CrossRef] [Green Version]
- Laughlin, R.B. Pumped thermal grid storage with heat exchange. J. Renew. Sustain. Energy 2017, 9, 044103. [Google Scholar] [CrossRef] [Green Version]
- McTigue, J.; White, A. A comparison of radial-flow and axial-flow packed beds for thermal energy storage. Appl. Energy 2018, 227, 533–541. [Google Scholar] [CrossRef]
- Benato, A. Performance and cost evaluation of an innovative Pumped Thermal Electricity Storage power system. Energy 2017, 138, 419–436. [Google Scholar] [CrossRef]
- Benato, A.; Stoppato, A. Heat transfer fluid and material selection for an innovative Pumped Thermal Electricity Storage system. Energy 2018, 147, 155–168. [Google Scholar] [CrossRef]
- Wang, L.; Lin, X.; Chai, L.; Peng, L.; Yu, D.; Chen, H. Cyclic transient behavior of the Joule–Brayton based pumped heat electricity storage: Modeling and analysis. Renew. Sustain. Energy Rev. 2019, 111, 523–534. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, C.; Wen, T.; Markides, C.N. High Temperature Sensible Storage—Industrial Applications. Encycl. Energy Storage 2022, 1, 424–432. [Google Scholar] [CrossRef]
- Bauer, T.; Steinmann, W.-D.; Laing, D.; Tamme, R. Thermal energy storage materials and systems. Annu. Rev. Heat Transf. 2012, 15, 131–177. [Google Scholar] [CrossRef]
- White, A.; Parks, G.; Markides, C.N. Thermodynamic analysis of pumped thermal electricity storage. Appl. Therm. Eng. 2013, 53, 291–298. [Google Scholar] [CrossRef] [Green Version]
- Desrues, T.; Ruer, J.; Marty, P.; Fourmigué, J.F. A thermal energy storage process for large scale electric applications. Appl. Therm. Eng. 2010, 30, 425–432. [Google Scholar] [CrossRef] [Green Version]
- McTigue, J.D.; Markides, C.N.; White, A.J. Performance response of packed-bed thermal storage to cycle duration perturbations. J. Energy Storage 2018, 19, 379–392. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Shin, D.-G.; Lee, S.-Y.; Favrat, D. Isothermal transcritical CO2 cycles with TES (thermal energy storage) for electricity storage. Energy 2013, 49, 484–501. [Google Scholar] [CrossRef]
- Davenne, T.R.; Peters, B.M. An Analysis of Pumped Thermal Energy Storage With De-coupled Thermal Stores. Front. Energy Res. 2020, 8, 160. [Google Scholar] [CrossRef]
- Dumont, O.; Lemort, V. Mapping of performance of pumped thermal energy storage (Carnot battery) using waste heat recovery. Energy 2020, 211, 118963. [Google Scholar] [CrossRef]
- Guo, J.; Cai, L.; Chen, J.; Zhou, Y. Performance optimization and comparison of pumped thermal and pumped cryogenic electricity storage systems. Energy 2016, 106, 260–269. [Google Scholar] [CrossRef]
- Mercangöz, M.; Hemrle, J.; Kaufmann, L.; Z’graggen, A.; Ohler, C. Electrothermal energy storage with transcritical CO2 cycles. Energy 2012, 45, 407–415. [Google Scholar] [CrossRef]
- White, A.J. Loss analysis of thermal reservoirs for electrical energy storage schemes. Appl. Energy 2011, 88, 4150–4159. [Google Scholar] [CrossRef] [Green Version]
- White, A.; McTigue, J.; Markides, C. Wave propagation and thermodynamic losses in packed-bed thermal reservoirs for energy storage. Appl. Energy 2014, 130, 648–657. [Google Scholar] [CrossRef] [Green Version]
- White, A.J.; McTigue, J.; Markides, C. Analysis and optimisation of packed-bed thermal reservoirs for electricity storage applications. Proc. Inst. Mech. Eng. Part A J. Power Energy 2016, 230, 739–754. [Google Scholar] [CrossRef]
- Benato, A.; Stoppato, A.; Mirandola, A. State-of-the-art and future development of sensible heat thermal electricity storage systems. Int. J. Heat Technol. 2017, 35, S244–S251. [Google Scholar] [CrossRef]
- Staub, S.; Bazan, P.; Braimakis, K.; Müller, D.; Regensburger, C.; Scharrer, D.; Schmitt, B.; Steger, D.; German, R.; Karellas, S.; et al. Reversible Heat Pump–Organic Rankine Cycle Systems for the Storage of Renewable Electricity. Energies 2018, 11, 1352. [Google Scholar] [CrossRef] [Green Version]
- Henchoz, S.; Buchter, F.; Favrat, D.; Morandin, M.; Mercangöz, M. Thermoeconomic analysis of a solar enhanced energy storage concept based on thermodynamic cycles. Energy 2012, 45, 358–365. [Google Scholar] [CrossRef]
- Koen, A.; Antunez, P.F.; White, A. A Study of Working Fluids for Transcritical Pumped Thermal Energy Storage Cycles. In Proceedings of the 2019 Offshore Energy and Storage Summit (OSES), Brest, France, 10–12 July 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Frate, G.F.; Ferrari, L.; Desideri, U. Multi-criteria investigation of a pumped thermal electricity storage (PTES) system with thermal integration and sensible heat storage. Energy Convers. Manag. 2020, 208, 112530. [Google Scholar] [CrossRef]
- Morandin, M.; Maréchal, F.; Mercangöz, M.; Buchter, F. Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles—Part B: Alternative system configurations. Energy 2012, 45, 386–396. [Google Scholar] [CrossRef]
- Morandin, M.; Maréchal, F.; Mercangöz, M.; Buchter, F. Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles—Part A: Methodology and base case. Energy 2012, 45, 375–385. [Google Scholar] [CrossRef]
- Steinmann, W. The CHEST (Compressed Heat Energy STorage) concept for facility scale thermo mechanical energy storage. Energy 2014, 69, 543–552. [Google Scholar] [CrossRef]
- Frate, G.F.; Antonelli, M.; Desideri, U. A novel Pumped Thermal Electricity Storage (PTES) system with thermal integration. Appl. Therm. Eng. 2017, 121, 1051–1058. [Google Scholar] [CrossRef]
- Steinmann, W.-D.; Jockenhöfer, H.; Bauer, D. Thermodynamic Analysis of High-Temperature Carnot Battery Concepts. Energy Technol. 2020, 8, 1900895. [Google Scholar] [CrossRef] [Green Version]
- Frate, G.F.; Antonelli, M.; Desideri, U. Pumped Thermal Electricity Storage: An Interesting Technology for Power-to-Heat Applications. 2018. Available online: https://arpi.unipi.it/handle/11568/924310 (accessed on 5 December 2022).
- Ayachi, F.; Tauveron, N.; Tartière, T.; Colasson, S.; Nguyen, D. Thermo-Electric Energy Storage involving CO2 transcritical cycles and ground heat storage. Appl. Therm. Eng. 2016, 108, 1418–1428. [Google Scholar] [CrossRef]
- Wang, G.-B.; Zhang, X.-R. Thermodynamic analysis of a novel pumped thermal energy storage system utilizing ambient thermal energy and LNG cold energy. Energy Convers. Manag. 2017, 148, 1248–1264. [Google Scholar] [CrossRef]
- Chen, L.X.; Hu, P.; Zhao, P.P.; Na Xie, M.; Wang, F.X. Thermodynamic analysis of a High Temperature Pumped Thermal Electricity Storage (HT-PTES) integrated with a parallel organic Rankine cycle (ORC). Energy Convers. Manag. 2018, 177, 150–160. [Google Scholar] [CrossRef]
- Nemati, A.; Nami, H.; Yari, M. Assessment of different configurations of solar energy driven organic flash cycles (OFCs) via exergy and exergoeconomic methodologies. Renew. Energy 2018, 115, 1231–1248. [Google Scholar] [CrossRef]
- Liu, Q.; Shen, A.; Duan, Y. Parametric optimization and performance analyses of geothermal organic Rankine cycles using R600a/R601a mixtures as working fluids. Appl. Energy 2015, 148, 410–420. [Google Scholar] [CrossRef]
- Fischer, J. Comparison of trilateral cycles and organic Rankine cycles. Energy 2011, 36, 6208–6219. [Google Scholar] [CrossRef]
- Shu, G.; Yu, Z.; Liu, P.; Xu, Z.; Sun, R. Potential of a thermofluidic feed pump on performance improvement of the dual-loop Rankine cycle using for engine waste heat recovery. Energy Convers. Manag. 2018, 171, 1150–1162. [Google Scholar] [CrossRef]
- Dong, B.; Xu, G.; Luo, X.; Zhuang, L.; Quan, Y. Analysis of the supercritical organic Rankine cycle and the radial turbine design for high temperature applications. Appl. Therm. Eng. 2017, 123, 1523–1530. [Google Scholar] [CrossRef]
- Baccioli, A.; Antonelli, M. Organic Flash Cycles: Off-design behavior and control strategies of two different cycle architectures for Waste Heat Recovery applications. Energy Convers. Manag. 2018, 157, 176–185. [Google Scholar] [CrossRef]
- Pan, L.; Wang, H.; Shi, W. Performance analysis in near-critical conditions of organic Rankine cycle. Energy 2012, 37, 281–286. [Google Scholar] [CrossRef]
- Gao, H.; Liu, C.; He, C.; Xu, X.; Wu, S.; Li, Y. Performance Analysis and Working Fluid Selection of a Supercritical Organic Rankine Cycle for Low Grade Waste Heat Recovery. Energies 2012, 5, 3233–3247. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Cai, L.; Chen, J.; Zhou, Y. Performance evaluation and parametric choice criteria of a Brayton pumped thermal electricity storage system. Energy 2016, 113, 693–701. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, M.; Song, J.; Wang, C.; Yan, J.; Markides, C.N. Advanced exergy analysis of a Joule-Brayton pumped thermal electricity storage system with liquid-phase storage. Energy Convers. Manag. 2021, 231, 113867. [Google Scholar] [CrossRef]
- Wang, L.; Lin, X.; Zhang, H.; Peng, L.; Chen, H. Brayton-cycle-based pumped heat electricity storage with innovative operation mode of thermal energy storage array. Appl. Energy 2021, 291, 116821. [Google Scholar] [CrossRef]
- Dumont, O.; Frate, G.F.; Pillai, A.; Lecompte, S.; De Paepe, M.; Lemort, V. Carnot battery technology: A state-of-the-art review. J. Energy Storage 2020, 32, 101756. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Lin, X.; Chen, H. Combined cooling, heating, and power generation performance of pumped thermal electricity storage system based on Brayton cycle. Appl. Energy 2020, 278, 115607. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, J.; Liu, M.; Zhao, Y.; Olympios, A.V.; Sapin, P.; Yan, J.; Markides, C.N. Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials. Renew. Energy 2022, 186, 431–456. [Google Scholar] [CrossRef]
- Farres Antunez, P. Modelling of Thermal Energy Storage Systems for Bulk Electricity Storage, Doctoral Report; Cambridge University: Cambridge, UK, 2015. [CrossRef]
- Ni, F.; Caram, H.S. Analysis of pumped heat electricity storage process using exponential matrix solutions. Appl. Therm. Eng. 2015, 84, 34–44. [Google Scholar] [CrossRef]
- Smallbone, A. Carnot Battery Energy Storage: A More Cost-Effective and Flexible Solution for Grid-Scale Energy Storage. 2019. Available online: https://www.rushlightevents.com/wp-content/uploads/2019/02/RUSHLIGHT-SHOW-2019-CLEANTECH-CONF-PANEL-1-NEWCASTLE-UNIV.pdf (accessed on 16 December 2022).
- Georgiou, S.; Aunedi, M.; Strbac, G.; Markides, C.N. Application of Liquid-Air and Pumped-Thermal Electricity Storage Systems in Low-Carbon Electricity Systems. In Proceedings of the Heat Powered Cycles (HPC-2018), Bayreuth, Germany, 16–19 September 2018. [Google Scholar]
- Georgiou, S.; Shah, N.; Markides, C.N. A thermo-economic analysis and comparison of pumped-thermal and liquid-air electricity storage systems. Appl. Energy 2018, 226, 1119–1133. [Google Scholar] [CrossRef]
- Georgiou, S.; Aunedi, M.; Strbac, G.; Markides, C.N. On the value of liquid-air and pumped-thermal electricity storage systems in low-carbon electricity systems. Energy 2020, 193, 116680. [Google Scholar] [CrossRef]
- Wang, L.; Lin, X.; Chai, L.; Peng, L.; Yu, D.; Liu, J.; Chen, H. Unbalanced mass flow rate of packed bed thermal energy storage and its influence on the Joule-Brayton based Pumped Thermal Electricity Storage. Energy Convers. Manag. 2019, 185, 593–602. [Google Scholar] [CrossRef]
- Dietrich, A.; Dammel, F.; Stephan, P. Exergoeconomic analysis of a pumped heat electricity storage system based on a Joule/Brayton cycle. Energy Sci. Eng. 2021, 9, 645–660. [Google Scholar] [CrossRef]
- Ceran, B. A comparative analysis of energy storage technologies. Polityka Energetyczna Energy Policy J. 2018, 21, 97–110. [Google Scholar] [CrossRef]
- Farres-Antunez, P.; McTigue, J.D.; White, A.J. A Pumped Thermal Energy Storage Cycle with Capacity for Concentrated Solar Power Integration. In Proceedings of the 2019 Offshore Energy and Storage Summit, OSES, Brest, France, 10–12 July 2019. [Google Scholar] [CrossRef]
- White, A.J. High-Performance Heat Exchangers for Thermo-Mechanical Energy Storage; University of Cambridge: Cambridge, UK, 2020. [Google Scholar] [CrossRef]
- Farres-Antunez, P. Modelling and Development of Thermo-Mechanical Energy Storage. Ph.D. Thesis, The University of Cambridge, Cambridge, UK, 2018. [Google Scholar]
- Farres-Antunez, P.; White, A.J.J. Thermodynamic Strategies for Pumped Thermal Exergy Storage (PTES) with Liquid Reservoirs. In Proceedings of the UK Energy Storage Conference, Birmingham, UK, 30 November–2 December 2016; pp. 1–45. [Google Scholar] [CrossRef]
- Xue, H. A comparative study of the Adiabatic Compressed Air Energy Storage (A-CAES) and Pumped Thermal Energy Storage (PTES) systems. In Proceedings of the 2019 Offshore Energy and Storage Summit, OSES, Brest, France, 10–12 July 2019. [Google Scholar] [CrossRef]
- Salomone-González, D.; González-Ayala, J.; Medina, A.; Roco, J.; Curto-Risso, P.; Hernández, A.C. Pumped heat energy storage with liquid media: Thermodynamic assessment by a Brayton-like model. Energy Convers. Manag. 2020, 226, 113540. [Google Scholar] [CrossRef]
- McTigue, J.; Farres-Antunez, P.; Ellingwood, K.; Neises, T.; White, A. Pumped Thermal Electricity Storage with Supercritical CO2 Cycles and Solar Heat Input; National Renewable Energy Laboratory: Golden, CO, USA, 2019; NREL/CP-5500-74753. Available online: https://www.nrel.gov/docs/fy20osti/74753.pdf (accessed on 5 July 2023).
- Morandin, M.; Mercangöz, M.; Hemrle, J.; Maréchal, F.; Favrat, D. Thermoeconomic design optimization of a thermo-electric energy storage system based on transcritical CO2 cycles. Energy 2013, 58, 571–587. [Google Scholar] [CrossRef]
- Baik, Y.-J.; Heo, J.; Koo, J.; Kim, M. The effect of storage temperature on the performance of a thermo-electric energy storage using a transcritical CO2 cycle. Energy 2014, 75, 204–215. [Google Scholar] [CrossRef]
- Tauveron, N.; Macchi, E.; Nguyen, D.; Tartière, T. Experimental Study of Supercritical CO2 Heat Transfer in a Thermo-Electric Energy Storage Based on Rankine and Heat-Pump Cycles. Energy Procedia 2017, 129, 939–946. [Google Scholar] [CrossRef]
- Abarr, M.L. Modeling Pumped Thermal Energy Storage with Waste Heat Harvesting. 2016. Available online: https://scholar.colorado.edu/mcen_gradetdshttps://scholar.colorado.edu/mcen_gradetds/124 (accessed on 10 July 2023).
- Abarr, M.; Hertzberg, J.; Montoya, L.D. Pumped Thermal Energy Storage and Bottoming System Part B: Sensitivity analysis and baseline performance. Energy 2017, 119, 601–611. [Google Scholar] [CrossRef]
- Abarr, M.; Geels, B.; Hertzberg, J.; Montoya, L.D. Pumped thermal energy storage and bottoming system part A: Concept and model. Energy 2017, 120, 320–331. [Google Scholar] [CrossRef]
Materials | Type | (Cp) [kJ/kg·K] | λ [W/(m·K)] | Working Temperature [°C] |
---|---|---|---|---|
Silica fire bricks | Solid | 1 | 1.5 | 200–700 |
Reinforced concrete | Solid | 0.85 | 1.5 | 200–400 |
Cast iron | Solid | 0.56 | 37 | 200–400 |
Basalt | Solid | 1.231 | 1.5 | ~500 |
Fe2O3 | Solid | 0.851 | 4.91 | ~600 |
Al2O3 | Solid | 1.167 | 11.1 | ~700–800 |
Carbonate salts | Liquid | 1.8 | 2 | 450–850 |
Nitrate salts | Liquid | 1.6 | 0.52 | 256–565 |
Liquid sodium | Liquid | 1.3 | 71 | 270–530 |
Nitrite salts | Liquid | 1.5 | 0.57 | 250–450 |
Silicone oil | Liquid | 2.1 | 0.1 | 300–400 |
Mineral oil | Liquid | 2.6 | 0.12 | 200–300 |
PTES Cycle | Working Fluid | Operating Temperatures | Advantages | Disadvantages |
---|---|---|---|---|
Brayton cycle | Air/Argon are commonly used | Hot storage: (500–1000) °C Cold storage: as low as −70 °C |
|
|
Rankine cycle | Thermal oil/pressurised water are commonly used | Operate at low temperature (100–250) °C |
|
|
Transcritical cycle | CO2 | Around 31 °C |
|
|
Efficiency [%] | Heat Transfer Fluid | Studied Thermal Energy Storage System | Ref. |
---|---|---|---|
Ƞstorage = 67 | Ar | Storage tanks (refractory bricks) | [33] |
ƞ RTE = 72 | Ar | Packed bed (granite) | [15] |
ƞ RTE = 70 | Ar | Packed bed (gravel) | [20,32,40,70,71] |
ƞ RTE = (64–82) | Air/Ar | Storage tanks (refractory materials) | [72] |
ƞ RTE = 40 | Ideal gas | __ | [65] |
ƞ RTE = (52–72) | Ar | Packed bed | [40,73] |
__ | Air/Ar | Packed bed | [27,28] |
ƞ RTE = (42–50) | Air/Ar | Packed bed (alumina) | [56] |
ƞ RTE = 80 | Ar | Packed bed (magnetite) | [36,74,75,76] |
ƞ RTE = (39–57) | He/Ar | Packed bed (basalt) | [29,69,77] |
ƞ RTE = (45–57) | Air/Ar | Packed-bed storage tank and regenerator (molten salt) | [52] |
ƞ RTE = 43 | Air | [78,79] | |
__ | N2/Ar | Storage tank (hexane, solar salt) | [25], |
ƞ RTE = (55–62) | He/N2/Air | Storage tank (thermal oil, molten salt, and pentane) | [56,71,80,81,82,83] |
ƞ RTE = (50–60) | Air/Ar | Storage tanks (solar salt, methanol, mineral oil, and propane) | [79,84] |
ƞ RTE = (35–40) | Air/Ar | Storage tank (solar salt, cryogenic liquids) | [85] |
Exergy efficiency (34–57) | Ar | Storage tank (butane, solar salt) | [66] |
ƞ RTE (60–78) | CO2 | Storage tanks (synthetic fluids and molten salt) | [86] |
Efficiency [%] | HTF | Thermal Energy Store | Reference |
---|---|---|---|
ƞ RTE = 65 1; ƞ RTE = 51 2 | CO2 | Storage tanks (ice, hot water) | [39] |
ƞ RTE = (48–64) | CO2 | Storage tanks (ice, hot water) | [48,49,87] |
ƞ RTE = (65–73) | CO2 | Storage tanks (ice, hot water) | [35] |
ƞ RTE = 30 | CO2 | Storage tanks (water) | [88] |
ƞ RTE = (43–56) | CO2 | Phase-change materials and grounded heat storage | [54,89] |
ƞ RTE = (52–66) | CO2 | Hot thermal energy storage (tube-in-concrete) | [89,90,91,92] |
ƞ RTE = 139 | CO2/NH3 | Heat exchanger and storage tanks | [55] |
ƞ RTE = 58 | R13I1 and CO2 | Storage tanks (oils and water) | [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabi, A.M.; Radulovic, J.; Buick, J.M. Pumped Thermal Energy Storage Technology (PTES): Review. Thermo 2023, 3, 396-411. https://doi.org/10.3390/thermo3030024
Rabi AM, Radulovic J, Buick JM. Pumped Thermal Energy Storage Technology (PTES): Review. Thermo. 2023; 3(3):396-411. https://doi.org/10.3390/thermo3030024
Chicago/Turabian StyleRabi, Ayah Marwan, Jovana Radulovic, and James M. Buick. 2023. "Pumped Thermal Energy Storage Technology (PTES): Review" Thermo 3, no. 3: 396-411. https://doi.org/10.3390/thermo3030024
APA StyleRabi, A. M., Radulovic, J., & Buick, J. M. (2023). Pumped Thermal Energy Storage Technology (PTES): Review. Thermo, 3(3), 396-411. https://doi.org/10.3390/thermo3030024