Environmental Drivers of Immature Whale Shark Surface Sightings in the Gulf of Tadjoura, Djibouti
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Area
2.2. Whale Shark Surface Sightings
2.3. Acquisition of Environmental Variables
- (1)
- Information on sea conditions was retrieved from the Windguru database https://www.windguru.cz/4910 (accessed on 6 February 2025) for the “Djibouti (East Africa)” region. Conditions were grouped into “calm” (height of waves ranging from 0–10 cm), “slightly rough” (height of waves ranging from 11–50 cm), and “rough” (height of waves exceeding 50 cm).
- (2)
- Information on brightness intensity was retrieved from the number of eighths (oktas) of sky obscured by clouds, following Rees [50]. Oktas were categorized as follows: 0–2 for clear sky; 3–5 for partly cloudy sky; and 6–8 for fully clouded sky.
- (3)
- Information on sea surface temperature (SST), reported in °C, was retrieved from the underwater computer.
- (4)
- Information on wind strength, reported in knots (km/h), was retrieved from the Windguru database for the “Djibouti (East Africa)” region.
- (5)
- Information on rainfall level, reported in mm/h, was also retrieved from the Windguru database for the same region.
- (6)
- Information on sea surface chlorophyll-a (SSC) concentration, reported in mg/m3, was retrieved from the Copernicus Marine Service database https://data.marine.copernicus.eu/ (accessed on 6 February 2025) for both sampling areas.
- (7)
- Information on El Niño Southern Oscillation (ENSO) conditions was expressed using the Multivariate ENSO index (MEI) obtained from the NOAA Climate Prediction Center database https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_advisory/ensodisc.shtml (accessed on 6 February 2025).
2.4. Statistics
3. Results
3.1. Whale Shark Surface Sightings and Identification
3.2. Environmental Drivers of Whale Shark Surface Sightings
3.2.1. GAM Analysis
3.2.2. Hurdle Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heupel, M.R.; Knip, D.M.; Simpfendorfer, C.A.; Dulvy, N.K. Sizing up the Ecological Role of Sharks as Predators. Mar. Ecol. Prog. Ser. 2014, 495, 291–298. [Google Scholar] [CrossRef]
- Monteforte, K.I.P.; Butcher, P.A.; Morris, S.G.; Kelaher, B.P. The Relative Abundance and Occurrence of Sharks off Ocean Beaches of New South Wales, Australia. Biology 2022, 11, 1456. [Google Scholar] [CrossRef] [PubMed]
- Myers, R.A.; Baum, J.K.; Shepherd, T.D.; Powers, S.P.; Peterson, C.H. Cascading Effects of the Loss of Apex Predatory Sharks from a Coastal Ocean. Science 2007, 315, 1846–1850. [Google Scholar] [CrossRef]
- Baum, J.K.; Worm, B. Cascading top-down effects of changing oceanic predator abundances. J. Anim. Ecol. 2009, 78, 699–714. [Google Scholar] [CrossRef]
- Polovina, J.J.; Abecassis, M.; Howell, E.A.; Woodworth, P. Increases in the Relative Abundance of Mid-Trophic Level Fishes Concurrent with Declines in Apex Predators in the Subtropical North Pacific, 1996–2006. Fish. Bull. 2009, 107, 523–531. [Google Scholar]
- Ferretti, F.; Worm, B.; Britten, G.L.; Heithaus, M.R.; Lotze, H.K. Patterns and ecosystem consequences of shark declines in the ocean. Ecol. Lett. 2010, 13, 1055–1071. [Google Scholar] [CrossRef]
- Stevens, J.; Bonfil, R.; Dulvy, N.K.; Walker, P. The effects of fishing on sharks, rays, and chimaeras (chondrichthyans), and the implications for marine ecosystems. ICES J. Mar. Sci. 2000, 57, 476–494. [Google Scholar] [CrossRef]
- Desbiens, A.A.; Roff, G.; Robbins, W.D.; Taylor, B.M.; Castro-Sanguino, C.; Dempsey, A.; Mumby, P.J. Revisiting the Paradigm of Shark-Driven Trophic Cascades in Coral Reef Ecosystems. Ecology 2021, 102, e03303. [Google Scholar] [CrossRef]
- Dulvy, N.K.; Pacoureau, N.; Rigby, C.L.; Pollom, R.A.; Jabado, R.W.; Ebert, D.A.; Finucci, B.; Pollock, C.M.; Cheok, J.; Derrick, D.H.; et al. Overfishing Drives over One-Third of All Sharks and Rays toward a Global Extinction Crisis. Curr. Biol. 2021, 31, 4773–4787. [Google Scholar] [CrossRef] [PubMed]
- Simpfendorfer, C.A.; Heithaus, M.R.; Heupel, M.R.; MacNeil, M.A.; Meekan, M.; Harvey, E.; Sherman, C.S.; Currey-Randall, L.M.; Goetze, J.S.; Kiszka, J.J.; et al. Widespread diversity deficits of coral reef sharks and rays. Science 2023, 380, 1155–1160. [Google Scholar] [CrossRef]
- Dunson, W.A.; Travis, J. The Role of Abiotic Factors in Community Organization. Am. Nat. 1991, 138, 1067–1091. [Google Scholar] [CrossRef]
- Schlaff, A.M.; Heupel, M.R.; Simpfendorfer, C.A. Influence of Environmental Factors on Shark and Ray Movement, Behaviour and Habitat Use: A Review. Rev. Fish. Biol. Fish. 2014, 24, 1089–1103. [Google Scholar] [CrossRef]
- Reyes-Mendoza, O.; Cárdenas-Palomo, N.; Herrera-Silveira, J.; Mimila-Herrera, E.; Trujillo-Córdova, J.; Chiappa-Carrara, X.; Arceo-Carranza, D. Quantity and Quality of Prey Available for the Whale Shark (Rhincodon typus, Smith 1828) at the Mexican Caribbean Aggregation Site. Reg. Stud. Mar. Sci. 2021, 43, 101696. [Google Scholar] [CrossRef]
- Callaghan, C.T.; Santini, L.; Spake, R.; Bowler, D.E. Population abundance estimates in conservation and biodiversity research. Trends Ecol. Evol. 2024, 39, 515–523. [Google Scholar] [CrossRef]
- Shea, B.D.; Benson, C.W.; De Silva, C.; Donovan, D.; Romeiro, J.; Bond, M.E.; Creel, S.; Gallagher, A.J. Effects of Exposure to Large Sharks on the Abundance and Behavior of Mobile Prey Fishes along a Temperate Coastal Gradient. PLoS ONE 2020, 15, e0230308. [Google Scholar] [CrossRef]
- Stevens, J.D.; Bradford, R.W.; West, G.J. Satellite tagging of blue sharks (Prionace glauca) and other pelagic sharks off eastern Australia: Depth behaviour, temperature experience and movements. Mar. Biol. 2010, 157, 575–591. [Google Scholar] [CrossRef]
- Tyminski, J.P.; de la Parra-Venegas, R.; González Cano, J.; Hueter, R.E. Vertical Movements and Patterns in Diving Behavior of Whale Sharks as Revealed by Pop-Up Satellite Tags in the Eastern Gulf of Mexico. PLoS ONE 2015, 10, e0142156. [Google Scholar] [CrossRef]
- Coffey, D.M.; Royer, M.A.; Meyer, C.G.; Holland, K.N. Diel Patterns in Swimming Behavior of a Vertically Migrating Deepwater Shark, the Bluntnose Sixgill (Hexanchus griseus). PLoS ONE 2020, 15, e0228253. [Google Scholar] [CrossRef]
- Rowat, D.; Gore, M.; Meekan, M.G.; Lawler, I.R.; Bradshaw, C.J.A. Aerial survey as a tool to estimate whale shark abundance trends. J. Exp. Mar. Bio. Ecol. 2009, 368, 1–8. [Google Scholar] [CrossRef]
- Witt, M.J.; Hardy, T.; Johnson, L.; McClellan, C.M.; Pikesley, S.K.; Ranger, S.; Richardson, P.B.; Solandt, J.-L.; Speedie, C.; Williams, R.; et al. Basking Sharks in the Northeast Atlantic: Spatio-Temporal Trends from Sightings in UK Waters. Mar. Ecol. Prog. Ser. 2012, 459, 121–134. [Google Scholar] [CrossRef]
- Robbins, W.D.; Peddemors, V.M.; Kennelly, S.J.; Ives, M.C. Experimental evaluation of shark detection rates by aerial observers. PLoS ONE 2014, 9, e83456. [Google Scholar] [CrossRef]
- Maruanaya, Y.; Retraubun, A.S.W.; Tuhumury, S.F.; Abrahamsz, J. Characteristics and the Appearance of New Whale Sharks (Rhincodon typus) as a Unique Phenomenon in the Kwatisore Waters within the Cenderawasih Bay National Park Area, Papua. Tomini J. Aquat. Sci. 2021, 2, 24–40. [Google Scholar] [CrossRef]
- Nykänen, M.; Jessopp, M.; Doyle, T.K.; Harman, L.A.; Cañadas, A.; Breen, P.; Hunt, W.; Mackey, M.; Cadhla, O.Ó.; Reid, D.; et al. Using Tagging Data and Aerial Surveys to Incorporate Availability Bias in the Abundance Estimation of Blue Sharks (Prionace glauca). PLoS ONE 2018, 13, e0203122. [Google Scholar] [CrossRef]
- Westgate, A.J.; Koopman, H.N.; Siders, Z.A.; Wong, S.N.P.; Ronconi, R.A. Population density and abundance of basking sharks Cetorhinus maximus in the lower Bay of Fundy, Canada. Endanger. Species Res. 2014, 23, 177–185. [Google Scholar] [CrossRef]
- Notarbartolo di Sciara, G.; Lauriano, G.; Pierantonio, N.; Cañadas, A.; Donovan, G.; Panigada, S. The Devil We Don’t Know: Investigating Habitat and Abundance of Endangered Giant Devil Rays in the North-Western Mediterranean Sea. PLoS ONE 2015, 10, e0141189. [Google Scholar] [CrossRef]
- Rowat, D.; Meekan, M.G.; Engelhardt, U.; Pardigon, B.; Vely, M. Aggregations of juvenile whale sharks (Rhincodon typus) in the Gulf of Tadjoura, Djibouti. Environ. Biol. Fishes 2007, 80, 465–472. [Google Scholar] [CrossRef]
- Rezzolla, D.; Storai, T. “Whale Shark Expedition”: Observations on Rhincodon typus from Arta Bay, Gulf of Tadjoura, Djibouti Republic, Southern Red Sea. Cybium 2010, 34, 195–206. [Google Scholar]
- Rowat, D.; Brooks, K.; March, A.; McCarten, C.; Jouannet, D.; Riley, L.; Jeffreys, G.; Perri, M.; Vely, M.; Pardigon, B. Long-term membership of whale sharks (Rhincodon typus) in coastal aggregations in Seychelles and Djibouti. Mar. Fresh. Res. 2011, 62, 621–627. [Google Scholar] [CrossRef]
- Micarelli, P.; Romano, C.; Buttino, I.; Reinero, F.; Serangeli, C.; Sperone, E. Phytoplanktonbloom and seasonal presence of whale shark (Rhincodon typus) along the coast of Djibouti-Gulf of Aden. Int. J. Curr. Adv. Res. 2017, 6, 3948–3949. [Google Scholar] [CrossRef]
- Boldrocchi, G.; Omar Moussa, Y.; Azzola, A.; Bettinetti, R. The ecology of the whale shark in Djibouti. Aquat. Ecol. 2020, 54, 535–551. [Google Scholar] [CrossRef]
- Reinero, F.R.; Marsella, A.; Pacifico, A.; Vicariotto, C.; Maule, L.; Mahrer, M.; Micarelli, P. Influence of Environmental Factors on the Surface Feeding Behaviour of Immature Male Whale Sharks in the Gulf of Tadjoura (Djibouti). Conservation 2024, 4, 792–811. [Google Scholar] [CrossRef]
- Boldrocchi, G.; Omar Moussa, Y.; Rowat, D.; Bettinetti, R. First results on zooplankton community composition and contamination by some persistent organic pollutants in the Gulf of Tadjoura (Djibouti). Sci. Total Environ. 2018, 627, 812–821. [Google Scholar] [CrossRef]
- Di Capua, I.; Micarelli, P.; Tempesti, J.; Reinero, F.R.; Buttino, I. Zooplankton size structure in the Gulf of Tadjoura (Djibouti) during whale shark sighting: A preliminary study. Cah. Biol. Mar. 2021, 62, 290–294. [Google Scholar] [CrossRef]
- Boldrocchi, G.; Bettinetti, R. Whale shark foraging on baitfish off Djibouti. Mar. Biodivers. 2019, 49, 2013–2016. [Google Scholar] [CrossRef]
- Andrzejaczek, S.; Vély, M.; Jouannet, D.; Rowat, D.; Fossette, S. Regional Movements of Satellite-Tagged Whale Sharks Rhincodon typus in the Gulf of Aden. Ecol. Evol. 2021, 11, 4920–4934. [Google Scholar] [CrossRef] [PubMed]
- Sleeman, J.C.; Meekan, M.G.; Wilson, S.G.; Jenner, C.K.; Jenner, M.N.; Boggs, G.S.; Steinberg, C.C.; Bradshaw, C.J.A. Biophysical Correlates of Relative Abundances of Marine Megafauna at Ningaloo Reef, Western Australia. Mar. Freshw. Res. 2007, 58, 608–623. [Google Scholar] [CrossRef]
- Sleeman, J.C.; Meekan, M.G.; Fitzpatrick, B.J.; Steinberg, C.R.; Ancel, R.; Bradshaw, C.J.A. Oceanographic and atmospheric phenomena influence the abundance of whale sharks at Ningaloo Reef, Western Australia. J. Exp. Mar. Biol. Ecol. 2010, 382, 77–81. [Google Scholar] [CrossRef]
- Rohner, C.A.; Pierce, S.J.; Marshall, A.D.; Weeks, S.J.; Bennett, M.B.; Richardson, A.J. Trends in sightings and environmental influences on a coastal aggregation of manta rays and whale sharks. Mar. Ecol. Prog. Ser. 2013, 482, 153–168. [Google Scholar] [CrossRef]
- Gibson, S. The Influence of Environmental and Anthropogenic Variables on Whale Shark (Rhincodon typus) Abundance in the South Ari Atoll. Ph.D. Thesis, University of Plymouth, Plymouth, UK, 2017. [Google Scholar]
- Manuhutu, J.F.; Wiadnya, D.G.R.; Sambah, A.B.; Herawati, E.Y. The presence of whale sharks based on oceanographic variations in Cenderawasih Bay National Park, Papua, Indonesia. Biodiversitas 2021, 22, 4948–4955. [Google Scholar] [CrossRef]
- Swai, E.; Alavaisha, E. Environmental factors influencing the sightings of whale shark (Rhincodon typus, Smith 1828): The case study in Kilindoni Bay, Mafia District, Tanzania. University of Dar es Salaam, Dar es Salaam, Tanzania. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Sequeira, A.; Mellin, C.; Rowat, D.; Meekan, M.G.; Bradshaw, C.J.A. Ocean-scale prediction of whale shark distribution. Divers. Distrib. 2012, 18, 504–518. [Google Scholar] [CrossRef]
- Milles, H.M.; Hoffmayer, E.R.; Arostegui, M.C.; de la Parra-Venegas, R.; Driggers, W.B., III; Franks, J.S.; Graham, R.T.; Hendon, J.M.; McKinney, J.A.; Olton, M.; et al. Characterizing seasonal whale shark habitat in the western North Atlantic. Mar. Ecol. Progr. Ser. 2025, 766, 91–106. [Google Scholar] [CrossRef]
- Wilson, S.G.; Taylor, J.G.; Pearce, A.F. The seasonal aggregation of whale sharks at Ningaloo Reef, Western Australia: Currents, migrations and the El Niño/ Southern Oscillation. Environ. Biol. Fishes 2001, 61, 1–11. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Arzoumanian, Z.; Holmberg, J.; Norman, B. An astronomical pattern-matching algorithm for computer-aided identification of whale sharks Rhincodon typus. J. Appl. Ecol. 2005, 42, 999–1011. [Google Scholar] [CrossRef]
- Brooks, K.; Rowat, D.; Pierce, S.J.; Jouannet, D.; Vely, M.A. Seeing spots: Photo-identification as a regional tool for whale shark identification. WIO J. Mar. Sci. 2010, 9, 185–194. [Google Scholar]
- McCoy, E.; Burce, R.; David, D.; Aca, E.Q.; Hardy, J.; Labaja, J.; Snow, S.J.; Ponzo, A.; Araujo, G. Long-term photo-identification reveals the population dynamics and strong site fidelity of adult whale sharks to the coastal waters of Donsol, Philippines. Front. Mar. Sci. 2018, 5, 271. [Google Scholar] [CrossRef]
- Matsumoto, R.; Toda, M.; Matsumoto, Y.; Ueda, K.; Nakazato, M.; Sato, K.; Uchida, S. Notes on Husbandry of Whale Sharks, Rhincodon typus, in Aquaria. In The Elasmobranch Husbandry Manual II: Recent Advances in the Care of Sharks, Rays and Their Relatives, 1st ed.; Smith, M., Warmolts, D., Thoney, D., Hueter, R., Murray, M., Ezcurra, J., Eds.; Ohio Biological Survey, Inc.: Columbus, OH, USA, 2017; pp. 15–22. [Google Scholar]
- Rees, G. Physical Principles of Remote Sensing, 3rd ed.; Cambridge University Press: Cambridge, UK, 2013; pp. 67–70. [Google Scholar]
- Rohner, C.A.; Prebble, C.E.M. Whale Shark Foraging, Feeding, and Diet. In Whale Sharks Biology, Ecology, and Conservation, 1st ed.; Rohner, C.A., Prebble, C.E.M., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 153–180. [Google Scholar] [CrossRef]
- Rowat, D.R.; Leblond, S.T.; Pardigon, B.; Vely, M.A.; Jouannet, D.; Webster, I.A. Djibouti-a kindergarten for whale sharks? Qscience. In Proceedings of the 4th International Whale Shark Conference, Doha, Qatar, 16–18 May 2016. [Google Scholar] [CrossRef]
- Simpfendorfer, C.A.; Heupel, M.R.; White, W.T.; Dulvy, N.K. The Importance of Research and Public Opinion to Conservation Management of Sharks and Rays: A Synthesis. Mar. Freshw. Res. 2011, 62, 518–527. [Google Scholar] [CrossRef]
- Robbins, R.L.; Booth, D.J. Seasonal, sexual and size segregation of White sharks, Carcharodon carcharias, at the Neptune Islands, South Australia. In Global Perspectives on the Biology and Life History of the White Shark; Domeier, M.L., Ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 225–254. [Google Scholar] [CrossRef]
- Jacoby, D.M.P.; Busawon, D.S.; Sims, D.W. Sex and social networking: The influence of male presence on social structure of female shark groups. Behav. Ecol. 2010, 21, 808–818. [Google Scholar] [CrossRef]
- Maxwell, S.M.; Scales, K.L.; Bograd, S.J.; Briscoe, D.K.; Dewar, H.; Hazen, E.L.; Lewison, R.L.; Welch, H.; Crowder, L.B. Seasonal spatial segregation in blue sharks (Prionace glauca) by sex and size class in the Northeast Pacific Ocean. Divers. Distrib. 2019, 25, 1304–1317. [Google Scholar] [CrossRef]
- Meekan, M.G.; Taylor, B.M.; Lester, E.; Ferreira, L.C.; Sequeira, A.M.M.; Dove, A.D.M.; Birt, M.J.; Aspinall, A.; Brooks, K.; Thums, M. Asymptotic Growth of Whale Sharks Suggests Sex-Specific Life-History Strategies. Front. Mar. Sci. 2020, 7, 575683. [Google Scholar] [CrossRef]
- Prebble, C.E.M.; Rohner, C.A.; Pierce, S.J.; Robinson, D.P.; Jaidah, M.Y.; Bach, S.S.; Trueman, C.N. Limited latitudinal ranging of juvenile whale sharks in the Western Indian Ocean suggests the existence of regional management units. Mar. Ecol. Prog. Ser. 2018, 601, 167–183. [Google Scholar] [CrossRef]
- Rohner, C.A.; Cochran, J.E.M.; Cagua, E.F.; Prebble, C.E.M.; Venables, S.K.; Berumen, M.L.; Kuguru, B.L.; Rubens, J.; Brunnschweiler, J.M.; Pierce, S.J. No Place Like Home? High Residency and Predictable Seasonal Movement of Whale Sharks Off Tanzania. Front. Mar. Sci. 2020, 7, 423. [Google Scholar] [CrossRef]
- Rohner, C.A.; Norman, B.; Reynolds, S.; Araujo, G.; Holmberg, J.; Pierce, S.J. Population Ecology of Whale Sharks. In Whale Sharks, 1st ed.; Rohner, C.A., Prebble, C.E.M., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 129–152. [Google Scholar] [CrossRef]
- Heyman, W.D.; Graham, R.T.; Kjerfve, B.; Johannes, R.E. Whale sharks Rhincodon typus aggregate to feed on fish spawn in Belize. Mar. Ecol. Prog. Ser. 2001, 215, 275–282. [Google Scholar] [CrossRef]
- de la Parra Venegas, R.; Hueter, R.; Cano, J.G.; Tyminski, J.; Remolina, J.G.; Maslanka, M.; Ormos, A.; Weigt, L.; Carlson, B.; Dove, A. An unprecedented aggregation of whale sharks, Rhincodon typus, in Mexican coastal waters of the Caribbean Sea. PLoS ONE 2011, 6, e18994. [Google Scholar] [CrossRef]
- Hacohen-Domené, A.; Martínez-Rincón, R.O.; Galván-Magaña, F.; Cárdenas-Palomo, N.; de la Parra-Venegas, R.; Galván Pastoriza, B.; Dove, A.D.M. Habitat suitability and environmental factors affecting whale shark (Rhincodon typus) aggregations in the Mexican Caribbean. Environ. Biol. Fishes 2015, 98, 1953–1964. [Google Scholar] [CrossRef]
- Friedlaender, A.S.; Halpin, P.N.; Qian, S.S.; Lawson, G.L.; Wiebe, P.H.; Thiele, D.; Read, A.J. Whale distribution in relation to prey abundance and oceanographic processes in shelf waters of the Western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 2006, 317, 297–310. [Google Scholar] [CrossRef]
- McKinney, J.; Hoffmayer, E.R.; Wu, W.; Fulford, R.; Hendon, J.M. Feeding habitat of the whale shark Rhincodon typus in the northern Gulf of Mexico determined using species distribution modelling. Mar. Ecol. Prog. Ser. 2012, 458, 199–211. [Google Scholar] [CrossRef]
- Robinson, D.P.; Jaidah, M.Y.; Jabado, R.W.; Lee-Brooks, K.; El-Din, N.M.N.; Malki, A.A.A.; Elmeer, K.; McCormick, P.A.; Henderson, A.C.; Pierce, S.J.; et al. Whale sharks, Rhincodon typus, aggregate around Offshore Platforms in Qatari waters of the Arabian Gulf to feed on Fish Spawn. PLoS ONE 2013, 8, e58255. [Google Scholar] [CrossRef]
- Cárdenas-Palomo, N.; Herrera-Silveira, J.; Velázquez-Abunader, I.; Reyes, O.; Ordoñez, U. Distribution and feeding habitat characterization of whale shark (Rhincodon typus) in a protected area in the Caribbean Sea. J. Fish. Biol. 2015, 86, 668–686. [Google Scholar] [CrossRef]
- Eckert, S.A.; Stewart, B.S. Telemetry and Satellite Tracking of Whale Sharks, Rhincodon typus, in the Sea of Cortez, Mexico, and the North Pacific Ocean. Environ. Biol. Fishes 2001, 60, 299–308. [Google Scholar] [CrossRef]
- Rowat, D.; Engelhardt, U. Seychelles: A case study of community involvement in the development of whale shark ecotourism and its socio-economic impact. Fisheries Res. 2007, 84, 109–113. [Google Scholar] [CrossRef]
- Nakamura, I.; Matsumoto, R.; Sato, K. Body temperature stability in the whale shark, the world’s largest fish. J. Exp. Biol. 2020, 223, 210286. [Google Scholar] [CrossRef]
- Rohner, C.A.; Couturier, L.I.E.; Richardson, A.J.; Pierce, S.J.; Prebble, C.E.M.; Gibbons, M.J.; Nichols, P.D. Diet of Whale Sharks Rhincodon Typus Inferred from Stomach Content and Signature Fatty Acid Analyses. Mar. Ecol. Prog. Ser. 2013, 493, 219–235. [Google Scholar] [CrossRef]
- Robinson, D.P.; Jaidah, M.Y.; Bach, S.S.; Lee, K.; Jabado, R.W.; Rohner, C.A.; March, A.; Caprodossi, S.; Henderson, A.C.; Mair, J.M.; et al. Population Structure, Abundance and Movement of Whale Sharks in the Arabian Gulf and the Gulf of Oman. PLoS ONE 2016, 11, e0158593. [Google Scholar] [CrossRef]
- Nelson, J.D.; Eckert, S.A. Foraging ecology of whale sharks (Rhincodon typus) within Bahía de Los Angeles, Baja California Norte, México. Fish. Res. 2007, 84, 47–64. [Google Scholar] [CrossRef]
- Almogi-Labin, A.; Schmiedl, G.; Hemleben, C.; Siman-Tov, R.; Segl, M.; Meischner, D. The influence of the NE winter monsoon on productivity changes in the Gulf of Aden, NW Arabian Sea, during the last 530 ka as recorded by benthic foraminifera. Mar. Micropaleontol. 2000, 40, 295–319. [Google Scholar] [CrossRef]
- Graham, W.M.; Largier, J.L. Upwelling shadows as nearshore retention sites: The example of northern Monterey Bay. Cont. Shelf Res. 1997, 17, 509–532. [Google Scholar] [CrossRef]
- Castelão, R.M.; Mavor, T.P.; Barth, J.A.; Breaker, L.C. Sea surface temperature fronts in the California Current System from geostationary satellite observations. J. Geophys. Res. 2006, 111, C09026. [Google Scholar] [CrossRef]
- Woodson, C.B.; McManus, M.A.; Tyburczy, J.A.; Barth, J.A.; Washburn, L.; Caselle, J.E.; Carr, M.H.; Malone, D.P.; Raimondi, P.T.; Menge, B.A.; et al. Coastal Fronts Set Recruitment and Connectivity Patterns across Multiple Taxa. Limnol. Oceanogr. 2012, 57, 582–596. [Google Scholar] [CrossRef]
- Escribano, R.; Hidalgo, P.; Valdés, V.; Frederick, L. Temperature effects on development and reproduction of copepods in the Humboldt Current: The advantage of rapid growth. J. Plankton Res. 2014, 36, 104–116. [Google Scholar] [CrossRef]
- D’Antonio, B.; Ferreira, L.C.; Meekan, M.; Thomson, P.G.; Lieber, L.; Virtue, P.; Power, C.; Pattiaratchi, C.B.; Brierley, A.S.; Sequeira, A.M.M.; et al. Links between the three-dimensional movements of whale sharks (Rhincodon typus) and the bio-physical environment off a coral reef. Mov. Ecol. 2024, 12, 10. [Google Scholar] [CrossRef] [PubMed]
- Hanson, C.E.; Pattiaratchi, C.B.; Waite, A.M. Sporadic upwelling on a downwelling coast: Phytoplankton responses to spatially variable nutrient dynamics off the Gascoyne region of Western Australia. Cont. Shelf Res. 2005, 25, 1561–1582. [Google Scholar] [CrossRef]
- Woo, M.; Pattiaratchi, C.; Schroeder, W. Dynamics of the Ningaloo current off Point Cloates, Western Australia. Mar. Freshw. Res. 2006, 57, 291–301. [Google Scholar] [CrossRef]
- Rousseaux, C.S.G.; Lowe, R.; Feng, M.; Waite, A.M.; Thompson, P.A. The role of the Leeuwin Current and mixed layer depth on the autumn phytoplankton bloom off Ningaloo Reef, Western Australia. Cont. Shelf Res. 2012, 32, 22–35. [Google Scholar] [CrossRef]
- Marcus, L.; Virtue, P.; Pethybridge, H.R.; Meekan, M.G.; Thums, M.; Nichols, P.D. Intraspecific Variability in Diet and Implied Foraging Ranges of Whale Sharks at Ningaloo Reef, Western Australia, from Signature Fatty Acid Analysis. Mar. Ecol. Prog. Ser. 2016, 554, 115–128. [Google Scholar] [CrossRef]
- Macena, B.C.L.; Hazin, F.H.V. Whale shark (Rhincodon typus) seasonal occurrence, abundance and demographic structure in the Mid-Equatorial Atlantic Ocean. PLoS ONE 2016, 11, e0164440. [Google Scholar] [CrossRef]
- Omar, Y.M.; Memery, L.; Carton, X.; Daher, A.; Duvielbourg, E. Effects of Monsoon Winds and Topographical Features on the Vertical Thermohaline and Biogeochemical Structure in the Gulf of Tadjoura (Djibouti). Open J. Mar. Sci. 2016, 6, 440–455. [Google Scholar] [CrossRef]




| Covariate | GVIFs | df | GVIFs(1/(2*df)) |
|---|---|---|---|
| temp | 19.0111 | 1 | 4.3602 |
| wind | 1.8467 | 1 | 1.3589 |
| mei | 19.2023 | 1 | 4.3820 |
| chl-a | 7.1129 | 1 | 2.6700 |
| sea | 2.4799 | 2 | 1.2549 |
| okta | 2.0333 | 1 | 1.4260 |
| rain | 4.4813 | 1 | 2.1169 |
| Model Covariates | K | AIC | ΔAIC | wi | R2 Adjusted (%) |
|---|---|---|---|---|---|
| chl-a + temp + wind | 4 | 254.4068 | 0.0000 | 0.2963 | 29.2596 |
| chl-a + mei + temp + wind | 5 | 256.0312 | 1.6245 | 0.1315 | 28.2069 |
| chl-a + okta + temp + wind | 5 | 256.2332 | 1.8264 | 0.1189 | 28.5666 |
| chl-a + rain + temp + wind | 5 | 256.3316 | 1.9248 | 0.1131 | 28.2018 |
| chl-a + temp | 3 | 256.9647 | 2.5580 | 0.0825 | 28.5375 |
| chl-a + mei + rain + temp + wind | 6 | 257.1876 | 2.7809 | 0.0738 | 27.1402 |
| chl-a + mei + okta + temp + wind | 6 | 257.8474 | 3.4406 | 0.0530 | 27.5019 |
| chl-a + sea conditions + temp + wind | 6 | 258.1217 | 3.7149 | 0.0462 | 27.1400 |
| chl-a + okta + rain + temp + wind | 6 | 258.1861 | 3.7793 | 0.0448 | 27.4575 |
| chl-a + rain + temp | 4 | 258.4184 | 4.0116 | 0.0399 | 27.4672 |
| Covariate | Variance Explained (%) | Pr(>|z|) |
|---|---|---|
| temp | 19.5748 | 0.0000 *** |
| chl-a | 9.2279 | 0.0000 *** |
| wind | 0.4973 | 0.0479 ** |
| Total | 29.3000 | / |
| Covariate | Estimate | SE | z-Value | Pr(>|z|) |
|---|---|---|---|---|
| (Intercept) | −1.8773 | 0.3943 | −4.7607 | 0.0000 *** |
| temp (1) | 0.9151 | 0.1966 | 4.6537 | 0.0000 *** |
| wind (1) | 0.6101 | 0.3084 | 1.9781 | 0.0479 ** |
| chl-a (1) | 1.8716 | 0.2786 | 6.7180 | 0.0000 *** |
| Distribution | AIC | BIC |
|---|---|---|
| Hurdle Poisson | 235.4666 | 276.4466 |
| Hurdle Negative Binomial | 236.4240 | 279.6807 |
| Model Covariates | K | AIC |
|---|---|---|
| temp + wind + mei + chl-a + sea conditions + okta + rain | 8 | 103.5916 |
| chl-a + mei + rain + sea conditions + temp + wind | 7 | 101.6025 |
| chl-a + mei + rain + temp + wind | 6 | 100.7984 |
| chl-a + mei + rain + temp | 5 | 99.2433 |
| chl-a + mei + temp | 4 | 98.5326 |
| chl-a + temp | 3 | 96.8446 |
| Model Covariates | K | AIC |
|---|---|---|
| temp + wind + mei + chl-a + sea conditions + okta + rain | 8 | 262.5767 |
| chl-a + mei + okta + rain + temp + wind | 7 | 259.1028 |
| chl-a + mei + rain + temp + wind | 6 | 257.1876 |
| chl-a + mei + temp + wind | 5 | 256.0312 |
| chl-a + temp + wind | 4 | 254.4068 |
| Covariate | Estimate | SE | z-Value | p-Value |
|---|---|---|---|---|
| (Intercept) | −1.4583 | 0.5848 | −2.4937 | 0.0126 * |
| chl-a (1) | 1.5905 | 0.5908 | 2.6919 | 0.0071 ** |
| temp (1) | 0.8837 | 0.5867 | 1.5064 | 0.1320 |
| Covariate | Estimate | SE | z-value | p-value |
|---|---|---|---|---|
| (Intercept) | −0.9776 | 0.5435 | −1.7987 | 0.0721 |
| temp (1) | 0.5787 | 0.2132 | 2.7139 | 0.0066 ** |
| wind (1) | 0.7567 | 0.3954 | 1.9141 | 0.0556 |
| chl-a (1) | 1.4180 | 0.4011 | 3.5355 | 0.0004 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reinero, F.R.; Marsella, A.; Vitale, G.; Pacifico, A.; Mahrer, M.; Micarelli, P. Environmental Drivers of Immature Whale Shark Surface Sightings in the Gulf of Tadjoura, Djibouti. Conservation 2025, 5, 68. https://doi.org/10.3390/conservation5040068
Reinero FR, Marsella A, Vitale G, Pacifico A, Mahrer M, Micarelli P. Environmental Drivers of Immature Whale Shark Surface Sightings in the Gulf of Tadjoura, Djibouti. Conservation. 2025; 5(4):68. https://doi.org/10.3390/conservation5040068
Chicago/Turabian StyleReinero, Francesca Romana, Andrea Marsella, Gaetano Vitale, Antonio Pacifico, Makenna Mahrer, and Primo Micarelli. 2025. "Environmental Drivers of Immature Whale Shark Surface Sightings in the Gulf of Tadjoura, Djibouti" Conservation 5, no. 4: 68. https://doi.org/10.3390/conservation5040068
APA StyleReinero, F. R., Marsella, A., Vitale, G., Pacifico, A., Mahrer, M., & Micarelli, P. (2025). Environmental Drivers of Immature Whale Shark Surface Sightings in the Gulf of Tadjoura, Djibouti. Conservation, 5(4), 68. https://doi.org/10.3390/conservation5040068

