Bibliometric Analysis of Global Research on Sugarcane Production and Its Effects on Biodiversity: Trends, Critical Points, and Knowledge Gaps
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy and Data Extraction
2.2. Data Analysis
2.2.1. Scientific Production per Year
2.2.2. Geographic Patterns in Publication
2.2.3. Main Topics and Themes
3. Results
3.1. Scientific Production per Year
3.2. Geographic Patterns in Publication and Collaboration Between Countries
3.3. Research Topics and Themes
3.3.1. Co-Occurrence Network Analysis
3.3.2. Thematic Map Analysis
4. Discussion
4.1. Publication Trends and Knowledge Gaps
4.2. Thematic Analysis and Management Implications
4.3. Policy Implications and Future Directions
5. Conclusions
- Conducting systematic reviews and meta-analyses that integrate ecological and agricultural data to better quantify trade-offs.
- Encouraging interdisciplinary collaboration among agronomists, ecologists, and policymakers to design strategies that reconcile sugarcane expansion with biodiversity conservation.
- Expanding ecological studies about other taxonomic groups such as mammals, birds, and fish, in order to capture broader biodiversity trade-offs and ecosystem dynamics.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Scheffran, J.; Felkers, M.; Froese, R. Economic Growth and the Global Energy Demand. In Green Energy to Sustainability; Wiley: Hoboken, NJ, USA, 2020; pp. 1–44. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhang, D. A critical review of comparative global historical energy consumption and future demand: The story told so far. Energy Rep. 2020, 6, 1973–1991. [Google Scholar] [CrossRef]
- Goldemberg, J.; Coelho, S.; Guardabassi, P. The sustainability of ethanol production from sugarcane. Energy Policy 2008, 36, 2086–2097. [Google Scholar] [CrossRef]
- Lamers, P.; Hamelinck, C.; Junginger, M.; Faaij, A.P.C. International bioenergy trade—A review of past developments in the liquid biofuel market. Renew. Sustain. Energy Rev. 2011, 15, 2655–2676. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Shetti, N.P.; Reddy, K.R.; Kwon, E.E.; Nadagouda, M.N.; Aminabhavi, T.M. Biomass utilization and production of biofuels from carbon neutral materials. Environ. Pollut. 2021, 276, 116731. [Google Scholar] [CrossRef]
- Khanna, M.; Crago, C.L.; Black, M. Can biofuels be a solution to climate change? The implications of land use change-related emissions for policy. Interface Focus 2011, 1, 233–247. [Google Scholar] [CrossRef]
- Filoso, S.; do Carmo, J.B.; Mardegan, S.F.; Lins, S.R.M.; Gomes, T.F.; Martinelli, L.A. Reassessing the environmental impacts of sugarcane ethanol production in Brazil to help meet sustainability goals. Renew. Sustain. Energy Rev. 2015, 52, 1847–1856. [Google Scholar] [CrossRef]
- Galdos, M.; Cavalett, O.; Seabra, J.E.; Nogueira, L.A.H.; Bonomi, A. Trends in global warming and human health impacts related to Brazilian sugarcane ethanol production considering black carbon emissions. Appl. Energy 2013, 104, 576–582. [Google Scholar] [CrossRef]
- Cerri, C.C.; Bernoux, M.; Maia, S.M.F.; Cerri, C.E.P.; Costa Junior, C.; Feigl, B.J.; Frazão, L.A.; Mello, F.F.D.C.; Galdos, M.V.; Moreira, C.S.; et al. Greenhouse gas mitigation options in Brazil for land-use change, livestock and agriculture. Sci. Agric. 2010, 67, 102–116. [Google Scholar] [CrossRef]
- Wood, A.W. Soil degradation and management under intensive sugarcane cultivation in North Queensland. Soil Use Manag. 1985, 1, 120–124. [Google Scholar] [CrossRef]
- Guan, N.; Liu, L.; Dong, K.; Xie, M.; Du, Y. Agricultural mechanization, large-scale operation and agricultural carbon emissions. Cogent Food Agric. 2023, 9, 2238430. [Google Scholar] [CrossRef]
- Novais, S.M.A.; Nunes, C.A.; Santos, N.B.; D’Amico, A.R.; Fernandes, G.W.; Quesada, M.; Neves, A.C.O. Effects of a possible pollinator crisis on food crop production in Brazil. PLoS ONE 2016, 11, e0167292. [Google Scholar] [CrossRef]
- Oliveira, W.; Colares, L.F.; Porto, R.G.; Viana, B.F.; Tabarelli, M.; Lopes, A.V. Food plants in Brazil: Origin, economic value of pollination and pollinator shortage risk. Sci. Total Environ. 2024, 912, 169147. [Google Scholar] [CrossRef]
- Goebel, F.-R.; Sallam, N. New pest threats for sugarcane in the new bioeconomy and how to manage them. Curr. Opin. Environ. Sustain. 2011, 3, 81–89. [Google Scholar] [CrossRef]
- Roy, S.; Roy, M.M.; Jaiswal, A.K.; Baitha, A. Soil Arthropods in Maintaining Soil Health: Thrust Areas for Sugarcane Production Systems. Sugar Tech 2018, 20, 376–391. [Google Scholar] [CrossRef]
- Beca, G.; Vancine, M.H.; Carvalho, C.S.; Pedrosa, F.; Alves, R.S.C.; Buscariol, D.; Galetti, M. High mammal species turnover in forest patches immersed in biofuel plantations. Biol. Conserv. 2017, 210, 352–359. [Google Scholar] [CrossRef]
- Dotta, G.; Verdade, L.M. Medium to large-sized mammals in agricultural landscapes of south-eastern Brazil. Mammalia 2011, 75, 345–352. [Google Scholar] [CrossRef]
- Oakley, J.L.; Bicknell, J.E. The impacts of tropical agriculture on biodiversity: A meta-analysis. J. Appl. Ecol. 2022, 59, 3072–3082. [Google Scholar] [CrossRef]
- Rashti, M.R.; Nelson, P.N.; Lan, Z.; Su, N.; Esfandbod, M.; Liu, X.; Chen, C. Sugarcane cultivation altered soil nitrogen cycling microbial processes and decreased nitrogen bioavailability in tropical Australia. J. Soils Sediments 2024, 24, 946–955. [Google Scholar] [CrossRef]
- Gunkel, G.; Kosmol, J.; Sobral, M.; Rohn, H.; Montenegro, S.; Aureliano, J. Sugar Cane Industry as a Source of Water Pollution—Case Study on the Situation in Ipojuca River, Pernambuco, Brazil. Water Air Soil Pollut. 2007, 180, 261–269. [Google Scholar] [CrossRef]
- Akinnawo, S.O. Eutrophication: Causes, consequences, physical, chemical and biological techniques for mitigation strategies. Environ. Chall. 2023, 12, 100733. [Google Scholar] [CrossRef]
- Bordonal, R.; Carvalho, J.; Lal, R.; Figueiredo, E.; Oliveira, B.; La Scala, N., Jr. Sustainability of sugarcane production in Brazil: A review. Agron. Sustain. Dev. 2018, 38, 13. [Google Scholar] [CrossRef]
- Laurance, W.F.; Sayer, J.; Cassman, K.G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 2014, 29, 107–116. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Martín-Martín, A.; Orduna-Malea, E.; Thelwall, M.; Delgado López-Cózar, E. Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. J. Informetr. 2018, 12, 1160–1177. [Google Scholar] [CrossRef]
- Pranckutė, R. Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Visualizing bibliometric networks. In Measuring Scholarly Impact: Methods and Practice; Ding, Y., Rousseau, R., Wolfram, D., Eds.; Springer: Cham, Switzerland, 2014; pp. 285–320. [Google Scholar] [CrossRef]
- Garfield, E. KeyWords Plus: ISI’s Breakthrough Retrieval Method. Part 1. Expanding Your Searching Power on Current Contents on Diskette. Curr. Contents 1990, 32, 5–9. [Google Scholar]
- Manfrinato, W.; Azevedo, T.; Viana, V.M. Moist forest restoration in Brazil: A locally based project of CO2 sequestration, biodiversity conservation and watershed protection in Corumbataí river basin. In Greenhouse Gas Mitigation: Technologies for Activities Implemented Jointly; Pergamon: Oxford, UK, 1998. [Google Scholar]
- Di Cosmo, A.; Pinelli, C.; Scandurra, A.; Aria, M.; D’Aniello, B. Research Trends in Octopus Biological Studies. Animals 2021, 11, 1808. [Google Scholar] [CrossRef]
- Collier, C.A.; Neto, M.S.D.; de Almeida, G.M.A.; Rosa, J.S.; Severi, W.; El-Deir, A.C.A. Effects of anthropic actions and forest areas on a neotropical aquatic ecosystem. Sci. Total Environ. 2019, 691, 367–377. [Google Scholar] [CrossRef]
- Jwaideh, M.A.A.; Sutanudjaja, E.H.; Dalin, C. Global impacts of nitrogen and phosphorus fertiliser use for major crops on aquatic biodiversity. Int. J. Life Cycle Assess. 2022, 27, 1058–1080. [Google Scholar] [CrossRef]
- Taniwaki, R.H.; Matthaei, C.D.; Cardoso, T.K.M.; Ferraz, S.F.B.; Martinelli, L.A.; Piggott, J.J. The effect of agriculture on the seasonal dynamics and functional diversity of benthic biofilm in tropical headwater streams. Biotropica 2019, 51, 18–27. [Google Scholar] [CrossRef]
- Cabra-García, J.; Bermúdez-Rivas, C.; Osorio, A.M.; Chacón, P. Cross-taxon congruence of α and β diversity among five leaf litter arthropod groups in Colombia. Biodivers. Conserv. 2012, 21, 1493–1508. [Google Scholar] [CrossRef]
- Couto, A.; Hellemans, S.; Roisin, Y.; Montes, M.A.; Vasconcellos, A. Effects of habitat loss on the genetic diversity of Embiratermes neotenicus (Isoptera) in a fragmented landscape of the Atlantic Forest, Brazil. Insect Conserv. Divers. 2020, 13, 351–359. [Google Scholar] [CrossRef]
- Filgueiras, B.K.C.; Peres, C.A.; Iannuzzi, L.; Tabarelli, M.; Leal, I.R. Functional reorganization of dung beetle assemblages in forest-replacing sugarcane plantations. J. Insect Conserv. 2022, 26, 683–695. [Google Scholar] [CrossRef]
- Schiesari, L.; Saito, V.; Ferreira, J.; Freitas, L.S.; Goebbels, A.J.; Leite, J.P.C.B.; Oliveira, J.C.; Pelinson, R.M.; Querido, B.B.; Carmo, J.; et al. Community Reorganization Stabilizes Freshwater Ecosystems in Intensively Managed Agricultural Fields. J. Appl. Ecol. 2023, 60, 1327–1339. [Google Scholar] [CrossRef]
- Roa-Fuentes, C.A.; Heino, J.; Cianciaruso, M.V.; Ferraz, S.; Zeni, J.O.; Casatti, L. Taxonomic, functional, and phylogenetic β-diversity patterns of stream fish assemblages in tropical agroecosystems. Freshw. Biol. 2019, 64, 447–460. [Google Scholar] [CrossRef]
- Rodrigues, T.F.; Kays, R.; Parsons, A.; Versiani, N.F.; Paolino, R.M.; Pasqualotto, N.; Pasqualotto, N.; Krepschi, V.G.; Chiarello, A.G. Managed forest as habitat for gray brocket deer (Mazama gouazoubira) in agricultural landscapes of southeastern Brazil. J. Mammal. 2017, 98, 1301–1309. [Google Scholar] [CrossRef]
- Suriano, M.T.; Fonseca-Gessner, A.A.; Roque, F.O.; Froehlich, C.G. Choice of macroinvertebrate metrics to evaluate stream conditions in Atlantic Forest, Brazil. Environ. Monit. Assess. 2011, 175, 87–101. [Google Scholar] [CrossRef]
- Beza, E.; Assen, M. Land use/cover dynamics and its drivers in Gelda catchment, Lake Tana watershed, Ethiopia. Environ. Syst. Res. 2017, 6, 4. [Google Scholar] [CrossRef]
- Nhiwatiwa, T.; Dalu, T.; Brendonck, L. Impact of Irrigation-Based Sugarcane Cultivation on the Chiredzi and Runde Rivers Quality, Zimbabwe. Sci. Total Environ. 2017, 587–588, 316–325. [Google Scholar] [CrossRef]
- Chaplin-Kramer, R.; Sim, S.; Hamel, P.; Bryant, B.; Noe, R.; Mueller, C.; Rigarlsford, G.; Kulak, M.; Kowal, V.; Sharp, R.; et al. Life cycle assessment needs predictive spatial modelling for biodiversity and ecosystem services. Nat. Commun. 2017, 8, 15065. [Google Scholar] [CrossRef]
- Shrestha, R.P.; Schmidt-Vogt, D.; Gnanavelrajah, N. Relating plant diversity to biomass and soil erosion in a cultivated landscape of the eastern seaboard region of Thailand. Appl. Geogr. 2010, 30, 606–617. [Google Scholar] [CrossRef]
- Yamauchi, D.H.; Garces, H.G.; Teixeira, M.D.; Rodrigues, G.F.B.; Ullmann, L.S.; Garces, A.G.; Hebeler-Barbosa, F.; Bagagli, E. Soil Mycobiome Is Shaped by Vegetation and Microhabitats: A Regional-Scale Study in Southeastern Brazil. J. Fungi 2021, 7, 587. [Google Scholar] [CrossRef]
- Canning, A.D.; Smart, J.C.R.; Dyke, J.; Curwen, G.; Hasan, S.; Waltham, N.J. Constructed Wetlands Suitability for Sugarcane Profitability, Freshwater Biodiversity and Ecosystem Services. Environ. Manag. 2023, 71, 304–320. [Google Scholar] [CrossRef]
- Gasparatos, A.; Stromberg, P.; Takeuchi, K. Biofuels, ecosystem services and human wellbeing: Putting biofuels in the ecosystem services narrative. Agric. Ecosyst. Environ. 2011, 142, 111–128. [Google Scholar] [CrossRef]
- Moreno-Conn, L.M.; Rodríguez-Hernandez, N.S.; Arguello, J.O.; Gordillo, O.G.; Bernal-Riobo, J.H.; Arango, M.; Baquero, J.E. Land use change and its effect on ecosystem services in an Oxisol of the eastern High Plains of meta department in Colombia. Front. Environ. Sci. 2022, 10, 687804. [Google Scholar] [CrossRef]
- Le Ru, B.; Capdevielle-Dulac, C.; Musyoka, B.K.; Sezonlin, M.; Conlong, D.; Van Den Berg, J.; Clamens, A.L.; Cugala, D.; Nyamukondiwa, C.; Ong’Amo, G.; et al. Phylogeny and systematics of the Sesamia coniota Hampson species group (Lepidoptera: Noctuidae: Noctuinae: Apameini: Sesamiina), with the description of three new species from the Afrotropical region. Ann. Soc. Entomol. Fr. NS 2020, 56, 417–435. [Google Scholar] [CrossRef]
- Agah-Manesh, H.; Rajabpour, A.; Yarahmadi, F.; Farsi, A. Potential of ultrasound to control Sesamia cretica (Lepidoptera: Noctuidae). Environ. Entomol. 2021, 50, 1393–1399. [Google Scholar] [CrossRef]
- Puker, A.; Correa, C.M.A.; Silva, A.S.; Silva, J.V.O.; Korasaki, V.; Grossi, P.C. Effects of fruit-baited trap height on flower and leaf chafer scarab beetles sampling in Amazon rainforest. Entomol. Sci. 2020, 23, 245–255. [Google Scholar] [CrossRef]
- Souza, T.B.; Albuquerque, L.S.C.; Iannuzzi, L.; Costa, F.C.; Gibernau, M.; Maia, A.C.D. Egg development and viability in three species of Cyclocephala (Coleoptera: Scarabaeidae: Dynastinae). Bull. Entomol. Res. 2023, 113, 118–125. [Google Scholar] [CrossRef]
- Alves, B.J.R.; Boddey, R.M.; Urquiaga, S. The success of BNF in soybean in Brazil. Plant Soil 2003, 252, 1–9. [Google Scholar] [CrossRef]
- Stirling, G.R.; Blair, B.L.; Pattemore, J.A.; Stirling, A.M. The impact of farming systems on soil health and soilborne diseases of sugarcane. Australas. Plant Pathol. 2010, 39, 431–439. [Google Scholar] [CrossRef]
- de Vries, S.C.; van de Ven, G.W.J.; van Ittersum, M.K.; Giller, K.E. Resource use efficiency and environmental performance of nine major biofuel crops, processed by first-generation conversion techniques. Biomass Bioenergy 2010, 34, 588–601. [Google Scholar] [CrossRef]
- Gasparatos, A.; von Maltitz, G.P.; Johnson, F.X.; Lee, L.; Mathai, M.; Puppim de Oliveira, J.A.; Willis, K.J. Biofuels in sub-Sahara Africa: Drivers, impacts and priority policy areas. Renew. Sustain. Energy Rev. 2018, 81, 2501–2521. [Google Scholar] [CrossRef]
- Schuenemann, F.; Kerr, W.A. European Union non-tariff barriers to imports of African biofuels. Agrekon 2019, 58, 407–425. [Google Scholar] [CrossRef]
- Kemp, J.; López-Baucells, A.; Rocha, R.; Wangensteen, O.S.; Andriatafika, Z.; Nair, A.; Cabeza, M.; Razafindrakoto, N.; Ratsoavina, F.M.; Ratrimomanarivo, F.; et al. Bats as potential suppressors of multiple agricultural pests: A case study from Madagascar. Agric. Ecosyst. Environ. 2019, 269, 88–96. [Google Scholar] [CrossRef]
- Adam, M.L.; de Souza, T.B.; Oliveira, B.A.; Oliveira, R.M.; Oliveira, M.T.; Oliveira, L.C.; Oliveira, A.P.; Oliveira, F.A.; Oliveira, J.R.; Oliveira, C.A.; et al. DNA damage as an indicator of the environmental vulnerability of bats in Brazil’s Caatinga drylands. Ecotoxicol. Environ. Saf. 2022, 243, 113996. [Google Scholar] [CrossRef]
- Benvindo-Souza, M.; Novaes, R.L.M.; Gregorin, R.; Moratelli, R.; Esbérard, C.E.L. Bat diversity in a mosaic of habitats in the Atlantic Forest of southeastern Brazil. Mammalia 2022, 86, 561–571. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Tan, L.; Yao, J.; Zheng, Y.; Shen, Q.; Tan, X. The impact of land use on stream macroinvertebrates: A bibliometric analysis for 2010–2021. Environ. Monit. Assess. 2023, 195, 11235. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, Y.; Choi, Y.; Li, F. A Scientometrics Review on Land Ecosystem Service Research. Sustainability 2020, 12, 2959. [Google Scholar] [CrossRef]
- Gonçalves, P.; Gonçalves-Souza, T.; Albuquerque, U. Chronic anthropogenic disturbances in ecology: A bibliometric approach. Scientometrics 2020, 123, 345–365. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization of the United Nations (2023)–with Major Processing by Our World in Data. Sugar Cane Production. Available online: https://ourworldindata.org/grapher/sugar-cane-production (accessed on 15 July 2024).
- Araújo, M.; Goes, T.; Marra, R.; Souza, M. Sugarcane: The evolution of technological thinking in agriculture. Rev. Política Agríc. 2010, 19, 65–77. [Google Scholar]
- Lapola, D.M.; Schaldach, R.; Alcamo, J.; Bondeau, A.; Koch, J.; Koelking, C.; Priess, J.A. Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proc. Natl. Acad. Sci. USA 2010, 107, 3388–3393. [Google Scholar] [CrossRef]
- Vera, I.; Wicke, B.; van der Hilst, F. Spatial Variation in Environmental Impacts of Sugarcane Expansion in Brazil. Land 2020, 9, 397. [Google Scholar] [CrossRef]
- Sparovek, G.; Barretto, A.G.O.P.; Berndes, G.; Martins, S.; Maule, R. Environmental, land-use and economic implications of Brazilian sugarcane expansion 1996–2006. Mitig. Adapt. Strateg. Glob. Change 2009, 14, 285–298. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Snyder, P.K. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Soares-Filho, B.; Rajão, R.; Macedo, M.; Carneiro, A.; Costa, W.; Coe, M.; Rodrigues, H.; Alencar, A. Cracking Brazil’s Forest Code. Science 2014, 344, 363–364. [Google Scholar] [CrossRef]
- Blicharska, M.; Smithers, R.J.; Kuchler, M.; Agrawal, G.K.; Gutiérrez, J.M.; Hassanali, A.; Mikusiński, G. Steps to overcome the North–South divide in research relevant to climate change policy and practice. Nat. Clim. Change 2017, 7, 21–27. [Google Scholar] [CrossRef]
- Rosa, C.; Baccaro, F.; Cronemberger, C.; Hipólito, J.; Barros, C.F.; Rodrigues, D.D.J.; Magnusson, W.E. The Program for Biodiversity Research in Brazil: The role of regional networks for biodiversity knowledge, dissemination, and conservation. An. Acad. Bras. Ciênc. 2021, 93, e20201517. [Google Scholar] [CrossRef]
- Collen, B.; Ram, M.; Zamin, T.; McRae, L. The Tropical Biodiversity Data Gap: Addressing Disparity in Global Monitoring. Trop. Conserv. Sci. 2008, 1, 75–88. [Google Scholar] [CrossRef]
- Wilson, K.A.; Auerbach, N.A.; Sam, K.; Magini, A.G.; Moss, A.S.L.; Langhans, S.D.; Meijaard, E. Conservation Research Is Not Happening Where It Is Most Needed. PLoS Biol. 2016, 14, e1002413. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef]
- Nepstad, D.; McGrath, D.; Stickler, C.; Alencar, A.; Azevedo, A.; Swette, B.; Hess, L. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 2014, 344, 1118–1123. [Google Scholar] [CrossRef]
- Pereira, H.M.; Ferrier, S.; Walters, M.; Geller, G.N.; Jongman, R.H.G.; Scholes, R.J.; Bruford, M.W.; Brummitt, N.; Butchart, S.H.M.; Cardoso, A.C.; et al. Essential Biodiversity Variables. Science 2013, 339, 277–278. [Google Scholar] [CrossRef]
- Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. FASEB J. 2008, 22, 338–342. [Google Scholar] [CrossRef]
- Sutherland, W.J.; Pullin, A.S.; Dolman, P.M.; Knight, T.M. The need for evidence-based conservation. Trends Ecol. Evol. 2004, 19, 305–308. [Google Scholar] [CrossRef]
- Searchinger, T.; Heimlich, R.; Houghton, R.A.; Dong, F.; Elobeid, A.; Fabiosa, J.; Yu, T.H. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 2008, 319, 1238–1240. [Google Scholar] [CrossRef]
- CBD. Convention on Biological Diversity. Strategic Plan for Biodiversity 2011–2020 and the Aichi Targets; Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2010. [Google Scholar]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Uusitalo, V.; Horn, R.; Maier, S.D. Assessing land use efficiencies and land quality impacts of renewable transportation energy systems for passenger cars using the LANCA® Method. Sustainability 2022, 14, 6144. [Google Scholar] [CrossRef]
- Viaud, P.; Heuclin, B.; Letourmy, P.; Christina, M.; Versini, A.; Mansuy, A.; Naudin, K. Sugarcane yield response to legume intercropped: A meta-analysis. Field Crops Res. 2023, 295, 108882. [Google Scholar] [CrossRef]
- Hou, D.; Meng, F.; Ji, C.; Xie, L.; Zhu, W.; Wang, S.; Sun, H. Linking food production and environmental outcomes: An application of a modified relative risk model to prioritize land-management practices. Agric. Syst. 2022, 196, 103342. [Google Scholar] [CrossRef]
- Sayer, J.; Sunderland, T.; Ghazoul, J.; Pfund, J.-L.; Sheil, D.; Meijaard, E.; Venter, M.; Boedhihartono, A.K.; Day, M.; Garcia, C.; et al. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc. Natl. Acad. Sci. USA 2013, 110, 8349–8356. [Google Scholar] [CrossRef]
- Weiner, J. Ecology–the science of agriculture in the 21st century. J. Agric. Sci. 2003, 141, 371–377. [Google Scholar] [CrossRef]
- Stanhope, J.; Weinstein, P. Critical appraisal in ecology: What tools are available, and what is being used in systematic reviews? Res. Synth. Methods 2023, 14, 342–356. [Google Scholar] [CrossRef] [PubMed]
- Pryor, S.W.; Smithers, J.; Lyne, P.; van Antwerpen, R. Impact of agricultural practices on energy use and greenhouse gas emissions for South African sugarcane production. J. Clean. Prod. 2017, 141, 137–145. [Google Scholar] [CrossRef]
- Defante, L.R.; Vilpoux, O.F.; Sauer, L. Rapid expansion of sugarcane crop for biofuels and influence on food production in the first producing region of Brazil. Food Policy 2018, 79, 121–131. [Google Scholar] [CrossRef]
- Askarianzadeh, A.; Moharramipour, S.; Kamali, K.; Fathipour, Y. Evaluation of damage caused by stalk borers, Sesamia spp. (Lepidoptera: Noctuidae), on sugarcane quality in Iran. Insect Sci. 2008, 38, 263–267. [Google Scholar] [CrossRef]
- Stork, N.E.; Eggleton, P. Invertebrates as determinants and indicators of soil quality. Am. J. Altern. Agric. 1992, 7, 38–47. [Google Scholar] [CrossRef]
- da Silva, G.B.S.; Mello, A.Y.; Steinke, V.A.J.G. Unidades de conservação no bioma Cerrado: Desafios e oportunidades para a conservação no Mato Grosso. Geoambiente 2012, 37, 541–554. [Google Scholar]
- Wieringa, J.; Poorter, L. Biodiversity hotspots in West Africa; patterns and causes. In Biodiversity of West African Forests: An Ecological Atlas of Woody Plant Species; CABI Publishing: Wallingford, UK, 2004; pp. 61–72. [Google Scholar]
- Burivalova, Z.; Miteva, D.; Salafsky, N.; Butler, R.A.; Wilcove, D.S. Evidence Types and Trends in Tropical Forest Conservation Literature. Trends Ecol. Evol. 2019, 34, 669–679. [Google Scholar] [CrossRef]
- Pretty, J. Agricultural sustainability: Concepts, principles and evidence. Philos. Trans. R. Soc. B 2008, 363, 447–465. [Google Scholar] [CrossRef] [PubMed]
- Vishnoi, S.; Goel, R.K. Climate smart agriculture for sustainable productivity and healthy landscapes. Environ. Sci. Policy 2024, 151, 103600. [Google Scholar] [CrossRef]
- Jyoti, B.; Singh, A. Projected Sugarcane Yield in Different Climate Change Scenarios in Indian States: A State-Wise Panel Data Exploration. Int. J. Food Agric. Econ. 2020, 8, 343–365. [Google Scholar]
- Suramaythangkoor, T.; Li, Z. Energy policy tools for agricultural residues utilization for heat and power generation: A case study of sugarcane trash in Thailand. Renew. Sustain. Energy Rev. 2012, 16, 4343–4351. [Google Scholar] [CrossRef]
- Esbérard, C.E.L. Morcegos no estado do Rio de Janeiro. Mastozool. Neotrop. 2005, 12, 279–281. [Google Scholar]
- Hill, A.P.; Prince, P.; Piña Covarrubias, E.; Doncaster, C.P.; Snaddon, J.L.; Rogers, A. AudioMoth: Evaluation of a smart open acoustic device for monitoring biodiversity and the environment. Methods Ecol. Evol. 2018, 9, 1199–1211. [Google Scholar] [CrossRef]
- Muylaert, R.L.; Stevens, R.D.; Esbérard, C.E.L.; Mello, M.A.R.; Garbino, G.S.T.; Varzinczak, L.H.; Galetti, M. ATLANTIC BATS: A data set of bat communities from the Atlantic Forests of South America. Ecology 2017, 98, 3227. [Google Scholar] [CrossRef]
- García-Morales, R.; Badano, E.I.; Moreno, C.E. Response of Neotropical Bat Assemblages to Human Land Use. Conserv. Biol. 2013, 27, 1096–1106. [Google Scholar] [CrossRef]
- Ancillotto, L.; Borrello, M.; Caracciolo, F.; Dartora, F.; Ruberto, M.; Rummo, R.; Russo, D. A bat a day keeps the pest away: Bats provide valuable protection from pests in organic apple orchards. J. Nat. Conserv. 2024, 78, 126558. [Google Scholar] [CrossRef]
- Benvindo-Souza, M.; Hosokawa, A.V.; dos Santos, C.G.A.; de Assis, R.A.; Pedroso, T.M.A.; Borges, R.E.; de Melo e Silva, D. Evaluation of genotoxicity in bat species found on agricultural landscapes of the Cerrado savanna, central Brazil. Environments 2022, 293, 118579. [Google Scholar] [CrossRef]
- Noer, C.; Dabelsteen, T.; Bohmann, K.; Monadjem, A. Molossid bats in an African agro-ecosystem select sugarcane fields as foraging habitat. Afr. Zool. 2012, 47, 1–11. [Google Scholar] [CrossRef]





| Journal | Number of Publications | Web of Science Categories | JIF * | JCR * |
|---|---|---|---|---|
| Global Change Biology Bioenergy | 7 | Agronomy|Energy & Fuels | 5.6 | Q1 |
| Applied Soil Ecology | 7 | Soil Science | 4.8 | Q1 |
| Renewable & Sustainable Energy Reviews | 6 | Green & Sustainable Science & Technology|Energy & Fuels | 15.9 | Q1 |
| Science Of The Total Environment | 6 | Environmental Sciences | 9.8 | Q1 |
| PLoS ONE | 6 | Multidisciplinary Sciences | 3.7 | Q2 |
| Agriculture Ecosystems & Environment | 5 | Agriculture, Multidisciplinary|Ecology|Environmental Sciences | 6.6 | Q1 |
| Journal Of Applied Ecology | 5 | Biodiversity Conservation|Ecology | 5.7 | Q1 |
| Environmental Monitoring And Assessment | 5 | Environmental Sciences | 3 | Q1 |
| Biomass & Bioenergy | 4 | Agricultural Engineering|Biotechnology & Applied Microbiology|Energy & Fuels | 6 | Q1 |
| Land | 4 | Multidisciplinary|Ecology|Environmental Sciences | 3.9 | Q1 |
| Country | Number of Papers Whose Corresponding Author Is Based at an Institution in That Country (CA) | Papers in Collaboration with Other Countries | Total Number of Authors Across All 217 Publications Based at Institutions in That Country (FA) |
|---|---|---|---|
| Brazil | 78 | 83 | 266 |
| USA | 19 | 45 | 96 |
| China | 11 | 10 | 34 |
| Australia | 10 | 9 | 38 |
| Netherlands | 8 | 14 | 18 |
| Japan | 8 | 6 | 15 |
| South Africa | 7 | 41 | 41 |
| India | 7 | 17 | 38 |
| France | 6 | 21 | 28 |
| Germany | 6 | 21 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, E.R.; Carvalho, W.D.; Mustin, K. Bibliometric Analysis of Global Research on Sugarcane Production and Its Effects on Biodiversity: Trends, Critical Points, and Knowledge Gaps. Conservation 2025, 5, 67. https://doi.org/10.3390/conservation5040067
dos Santos ER, Carvalho WD, Mustin K. Bibliometric Analysis of Global Research on Sugarcane Production and Its Effects on Biodiversity: Trends, Critical Points, and Knowledge Gaps. Conservation. 2025; 5(4):67. https://doi.org/10.3390/conservation5040067
Chicago/Turabian Styledos Santos, Eduardo Rodrigues, William Douglas Carvalho, and Karen Mustin. 2025. "Bibliometric Analysis of Global Research on Sugarcane Production and Its Effects on Biodiversity: Trends, Critical Points, and Knowledge Gaps" Conservation 5, no. 4: 67. https://doi.org/10.3390/conservation5040067
APA Styledos Santos, E. R., Carvalho, W. D., & Mustin, K. (2025). Bibliometric Analysis of Global Research on Sugarcane Production and Its Effects on Biodiversity: Trends, Critical Points, and Knowledge Gaps. Conservation, 5(4), 67. https://doi.org/10.3390/conservation5040067

