Identification of Priority Areas for the Control of Soil Erosion and the Influence of Terrain Factors Using RUSLE and GIS in the Caeté River Basin, Brazilian Amazon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Data
2.3. Geomorphological and Multiple Linear Regression Analysis
2.4. Soil Erosion Modeling by RUSLE Model
2.4.1. Rainfall Erosivity Factor (R)
2.4.2. Soil Erodibility Factor (K)
2.4.3. Topographic Factor (LS)
2.4.4. Cover Management Factor (C Factor)
2.4.5. Conservation Support Practice Factor (P Factor)
2.4.6. Identification of Priority Areas for Erosion Control
3. Results
3.1. Soil Erosion Explained by Terrain Variables
3.2. Estimation of RUSLE Parameters
3.3. Estimation of Mean Annual Soil Loss and Priority Areas
4. Discussion
4.1. Role of Geomorphological Variables in Soil Erosion
4.2. Soil Erosion Risk in the CRB
4.3. Model Uncertainties and Input Data Validation
4.4. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borrelli, P.; Robinson, D.A.; Panagos, P.; Ballabio, C. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [PubMed]
- Lense, G.H.E.; Parreiras, T.C.; Spalevic, V.; Avanzi, J.C.; Mincato, R.L. Soil losses in the State of Rondônia, Brazil. Ciênc. Rural 2021, 52, e20200460. [Google Scholar] [CrossRef]
- Mendonça, P.G.; Silva Júnior, J.F.S.; Oliveira, I.R.; Teixeira, D.D.B.; Moitinho, M.R.; Martins Filho, M.V.; Marques Júnior, J.; Pereira, G.T. Spatial uncertainty of nutrient loss by erosion in sugarcane harvesting scenarios. Rev. Bras. Ciênc. Solo 2015, 39, 1181–1189. [Google Scholar] [CrossRef]
- Bhatti, M.T.; Ashraf, M.; Anwar, A.A. Soil erosion and sediment load management strategies for sustainable irrigation in arid regions. Sustainability 2021, 13, 3547. [Google Scholar] [CrossRef]
- Saito, Y.K.; Viana, L.J.F.; Ferreira, I.O.; Gomes, E.A. Sedimentation in reservoirs. Case study: The reservoir of the São Bartolomeu stream, Viçosa, Minas Gerais, Brazil. Earth Sci. Res. J. 2021, 25, 193–200. [Google Scholar] [CrossRef]
- Ebabu, K.; Tsunekawa, A.; Haregeweyn, N.; Tsubo, M.; Adgo, E.; Fenta, A.A.; Meshesha, D.T.; Berihun, M.L.; Sultan, D.; Vanmaercke, M.; et al. Global analysis of cover management and support practice factors that control soil erosion and conservation. Int. Soil Water Conserv. Res. 2022, 10, 161–176. [Google Scholar] [CrossRef]
- Ayele, N.A.; Naqvi, H.R.; Alemayehu, D. Rainfall induced soil erosion assessment, prioritization and conservation treatment using RUSLE and SYI models in highland watershed of Ethiopia. Geocarto Int. 2020, 9, 2524–2540. [Google Scholar] [CrossRef]
- Barbosa, R.I.; Fearnside, P.M. Erosão do solo na Amazônia: Estudo de caso na região do Apiaú, Roraima, Brasil. Acta Amaz. 2000, 30, 589–600. [Google Scholar] [CrossRef]
- Duarte, A.C.; Souza, L.R.; Vasconcelos, F.G.; Sales, D.C. Soil erosion assessment using RUSLE model and GIS in Juma Watershed, Southern Amazonas State. Floresta E Ambiente 2021, 28, e20210010. [Google Scholar] [CrossRef]
- Riquetti, N.B.; Beskow, S.; Guo, L.; Mello, C.R. Soil erosion assessment in the Amazon basin in the last 60 years of deforestation. Sci. Total Environ. 2023, 895, 164836. [Google Scholar] [CrossRef]
- Fonseca, E.L.; Silva Filho, E.P. Binary Logistic Regression applied to erosion susceptibility mapping in the Southern Amazon. Model. Earth Syst. Environ. 2023, 9, 1381–1393. [Google Scholar] [CrossRef]
- Aslam, B.; Maqsoom, A.; Alaloul, W.S.; Musarat, M.A.; Jabbar, T.; Ahmed, Z. Soil erosion susceptibility mapping using a GIS-based multi-criteria decision approach: Case of district Chitral, Pakistan. Ain Shams Eng. J. 2021, 12, 1637–1649. [Google Scholar] [CrossRef]
- Farinasso, M.; Carvalho Júnior, O.A.; Guimarães, R.F.; Gomes, R.A.T.; Ramos, V.M. Avaliação qualitativa do potencial de erosão laminar em grandes áreas por meio da EUPS utilizando novas metodologias em SIG para os cálculos dos seus fatores na região do Alto Parnaíba-Pi-MA. Rev. Bras. Geomorfol. 2006, 7, 73–85. [Google Scholar] [CrossRef]
- Foster, G.R.; Neibling, W.H.; Davis, S.S.; Alberts, E.E. Modeling particle segregation during deposition by Overland flow. In Proceedings of the Hydrologic Transport Modeling Symposium, New Orleans, LA, USA, 10–11 December 1980; American Society of Agricultural Engineers Publication: St Joseph, MI, USA; Volume 4–80, pp. 184–195. [Google Scholar]
- Wang, J.; Lu, P.; Valente, D.; Petrosillo, I.; Babu, S.; Xu, S.; Li, C.; Huang, D.; Liu, M. Analysis of soil erosion characteristics in small watershed of the loess tableland Plateau of China. Ecol. Indic. 2022, 137, 108765. [Google Scholar] [CrossRef]
- Minár, J.; Drăguț, L.; Evans, I.S.; Feciskanin, R.; Gallay, M.; Jenčo, M.; Popov, A. Physical geomorphometry for elementary land surface segmentation and digital geomorphological mapping. Earth-Sci. Rev. 2024, 248, 104631. [Google Scholar] [CrossRef]
- Steinmetz, A.L.; Cassalho, F.; Caldeira, T.L.; Oliveira, V.A.; Beskow, S.; Timm, L.C. Assessment of soil loss vulnerability in data-scarce watersheds in southern Brazil. Ciênc. Agrotecnol. 2018, 42, 575–587. [Google Scholar] [CrossRef]
- Panagopoulos, Y.; Dimitriou, E.; Skoulikidis, N. Vulnerability of a northeast Mediterranean island to soil loss. Can grazing management mitigate erosion? Water 2019, 11, 1491. [Google Scholar] [CrossRef]
- Oliveira, V.A.; Mello, C.R.; Durães, M.F.; Silva, A.M. Soil erosion vulnerability in the Verde River Basin, Southern Minas Gerais. Ciênc. Agrotecnol. 2014, 38, 262–269. [Google Scholar] [CrossRef]
- Getnet, T.; Mulu, A. Assessment of soil erosion rate and hotspot areas using RUSLE and multi-criteria evaluation technique at Jedeb watershed, Upper Blue Nile, Amhara Region, Ethiopia. Environ. Chall. 2021, 4, 100174. [Google Scholar] [CrossRef]
- Lense, G.H.E.; Avanzi, J.C.; Parreiras, T.C.; Mincato, R.L. Effects of deforestation on water erosion rates in the Amazon region. Rev. Bras. Ciênc. Agrár. 2020, 15, 1–7. [Google Scholar] [CrossRef]
- Chatterjee, S.; Krishna, S.A.; Sharma, A.P. Geospatial assessment of soil erosion vulnerability at watershed level in some sections of the Upper Subarnarekha river basin, Jharkhand, India. Environ. Earth Sci. 2014, 71, 357–374. [Google Scholar] [CrossRef]
- Mellado, D.E.G.; Mello, C.R.; Curi, N. Environmental degradation risk by water erosion in a water producer Colombian Andes basin. Ciênc. Agrotecnol. 2021, 45, e010021. [Google Scholar] [CrossRef]
- Chen, S.; Zha, X.; Bai, Y.; Wang, L. Evaluation of soil erosion vulnerability on the basis of exposure, sensitivity, and adaptive capacity: A case study in the Zhuxi watershed, Changting, Fujian Province, Southern China. Catena 2019, 177, 57–69. [Google Scholar] [CrossRef]
- Sun, C.; Hou, H.; Chen, W. Effects of vegetation cover and slope on soil erosion in the Eastern Chinese Loess Plateau under different rainfall regimes. PeerJ 2021, 9, e11226. [Google Scholar] [CrossRef]
- Augustine, A.; Hudson, P.F. A review of soil erosion models with special reference to the needs of humid tropical mountainous environments. Eur. J. Sustain. Dev. 2014, 3, 299–310. [Google Scholar] [CrossRef]
- Bertoni, J.; Lombardi Neto, F. Conservação do Solo; Ícone: São Paulo, Brasil, 1999. [Google Scholar]
- Desalegn, A.; Tezera, A.; Tesfay, F. Developing GIS-based soil erosion map using RUSLE of Andit Tid Watershed, Central Highlands of Ethiopia. J. Sci. Res. Rep. 2018, 1, 1–13. [Google Scholar] [CrossRef]
- Morgan, R.P.C. Soil Erosion and Conservation, 3rd ed.; Blackwell Publishing Company: Oxford, UK, 2005. [Google Scholar]
- Kebede, Y.S.; Endalamaw, N.T.; Sinshaw, B.G.; Atinkut, H.B. Modeling soil erosion using RUSLE and GIS at watershed level in the upper beles, Ethiopia. Environ. Chall. 2021, 2, 100009. [Google Scholar] [CrossRef]
- Desmet, P.J.J.; Govers, G. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. J. Soil Water Conserv. 1996, 51, 427–433. [Google Scholar] [CrossRef]
- Moore, L.D.; Burch, G.J. Physical basis of the length-slope factor in the universal soil loss equation. Soil Sci. Soc. Am. J. 1985, 50, 1294–1298. [Google Scholar] [CrossRef]
- Bensekhria, A.; Bouhata, R. Assessment and mapping soil water erosion using E approach and GIS tools: Case of Oued el-Hai Watershed, Aurès West, Northeastern of Algeria. ISPRS Int. J. Geo-Inf. 2022, 11, 84. [Google Scholar] [CrossRef]
- Santos, H.G. d, S.; Jacomine, P.K.T.; LHCd, A.; VAd, O.; Lumbreras, J.F.; Coelho, M.R.; Araujo Filho JCd, O.J.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa: Brasília, Brazil, 2018; p. 530. Available online: geoinfo.cnps.embrapa.br/layers/geonode%3Abrasil_solos_5m_20201104 (accessed on 10 January 2025).
- Santos, P.L.; Rodrigues, T.E.; Oliveira Júnior, R.C.; Silva, J.M.L.; Valente, M.A.; Silva, P.R.O.; Cardoso Júnior, E.Q. Zoneamento Agroecológico do Município de Augusto Corrêa, Estado do Pará; Embrapa Amazônia Oriental: Belém, Brazil, 1999; Documentos, 26; p. 55. [Google Scholar]
- Almeida, C.A.; Coutinho, A.C.; Esquerdo, J.C.D.M.; Adami, M.; Venturieri, A.; Diniz, C.G.; Dessay, N.; Durieux, L.; Gomes, A.R. High spatial resolution land use and land cover mapping of the Brazilian Legal Amazon in 2008 using Landsat-5/TM and MODIS data. Acta Amaz. 2016, 46, 291–302. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, R.G.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); U.S. Government Printing Office: Washington, DC, USA, 1997; p. 703.
- Pandey, A.; Chowdary, V.M.; Mal, B.C. Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS, and remote sensing. Water Resour. Manag. 2007, 21, 729–746. [Google Scholar] [CrossRef]
- Stefanidis, S.; Alexandridis, V.; Ghosal, K. Assessment of water-induced soil erosion as a threat to Natura 2000 protected areas in Crete Island, Greece. Sustainability 2022, 14, 2738. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Rainfall energy and its relationship to soil loss. Eos Trans. Am. Geophys. Union 1958, 39, 285–291. [Google Scholar] [CrossRef]
- Nunes, J.G.; Campos, M.C.C.; Oliveira, F.P.; Nunes, J.C.; Macedo, J.A.B. Soil loss tolerance in southern Amazon. Ambiência 2012, 8, 859–868. [Google Scholar] [CrossRef]
- Silva, A.M. Rainfall erosivity map for Brazil. Catena 2004, 57, 251–259. [Google Scholar] [CrossRef]
- Carvalho Filho, A.D.; Lumbreras, J.F.; Wittern, K.P.; Lemos, A.L.; dos Santos, R.D.; Calderano Filho, B.; de Oliveira, R.P.; Aglio, M.L.D.; de Souza, J.S.; Chaffin, C.E.; et al. Levantamento de Reconhecimento de Baixa Intensidade dos Solos do Estado do Rio de Janeiro; Embrapa Solos: Rio de Janeiro, Brasil, 2003. [Google Scholar]
- Schad, P.; van Huysteen, C.; Michéli, E. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2014. [Google Scholar]
- QGIS Development Team. QGIS Geographic Information System; Open Source Geospatial Foundation: Beaverton, OR, USA, 2023; Available online: https://qgis.org (accessed on 8 January 2025).
- GRASS Development Team. Geographic Resources Analysis Support System (GRASS GIS) Software; Open Source Geospatial Foundation: Beaverton, OR, USA, 2023; Available online: https://grass.osgeo.org (accessed on 8 January 2025).
- McCool, D.K.; Brown, L.C.; Foster, G.R.; Mutchler, C.K.; Meyer, L.D. Revised slope steepness factor for the universal soil loss equation. Trans. ASAE 1987, 30, 1387–1396. [Google Scholar] [CrossRef]
- McCool, D.K.; Foster, G.R.; Mutchler, C.K.; Meyer, L.D. Revised slope length factor for the universal soil loss equation. Trans. ASAE 1989, 32, 1571–1576. [Google Scholar] [CrossRef]
- Ruhoff, A.L.; Souza, B.S.P.; Giotto, E.; Pereira, R.S. Avaliação dos processos erosivos através da equação universal de perdas de solos, implementada com algoritmos em LEGAL. Geomática 2006, 1, 12–22. [Google Scholar]
- Ozcan, A.U.; Erpul, G.; Basaran, M.; Erdogan, H.E. Use of USLE/GIS technology integrated with geostatistics to assess soil erosion risk in different land uses of Indagi Mountain Pass—Cankırı, Turkey. Environ. Geol. 2008, 53, 1731–1741. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Zhang, S.; Yu, C.; Sun, R.; Wang, D.; Zhu, C.; Zhang, J. Identification of priority areas for soil and water conservation planning based on multi-criteria decision analysis using Choquet Integral. Int. J. Environ. Res. Public Health 2020, 17, 1331. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Goncalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2014, 22, 711–728. [Google Scholar] [CrossRef]
- Beskow, S.; Mello, C.R.; Norton, L.D.; Curi, N.; Viola, M.R.; Avanzi, J.C. Soil erosion prediction in the Grande River Basin, Brazil using distributed modeling. Catena 2009, 79, 49–59. [Google Scholar] [CrossRef]
- Cunha, E.R.; Bacani, V.M.; Panachuk, E. Modeling soil erosion using RUSLE and GIS in a watershed occupied by rural settlement in the Brazilian Cerrado. Nat. Hazards 2017, 85, 851–868. [Google Scholar] [CrossRef]
- Silva, A.M.; Ranzini, M.; Guandique, M.E.G.; Arcova, F.C.S.; Cicco, V. Estudo integrado do processo erosivo numa microbacia experimental localizada no município de Cunha—SP. Geociências 2005, 24, 43–54. [Google Scholar]
- Pandey, S.; Kumar, P.; Zlatić, M.; Nautiyal, R.; Panwar, V.P. Recent advances in assessment of soil erosion vulnerability in a watershed. Int. Soil Water Conserv. Res. 2021, 9, 305–318. [Google Scholar] [CrossRef]
- Teshome, A.; Halefom, A.; Teshome, M.; Ahmad, I.; Taddele, Y.; Dananto, M.; Demisse, S. Soil erosion modelling using GIS and revised universal soil loss equation approach: A case study of Guna-Tana landscape, Northern Ethiopia. Model. Earth Syst. Environ. 2021, 7, 125–134. [Google Scholar] [CrossRef]
- Uddin, K.; Murthy, M.S.R.; Wahid, S.M.; Matin, M.A. Estimation of soil erosion dynamics in the Koshi Basin using GIS and remote sensing to assess priority areas for conservation. PLoS ONE 2016, 11, e0150494. [Google Scholar] [CrossRef]
- Raj, A.D.; Kumar, S.; Sooryamol, K.R. Modelling climate change impact on soil loss and erosion vulnerability in a watershed of Shiwalik Himalayas. Catena 2022, 214, 106279. [Google Scholar] [CrossRef]
- Assouline, S.; Ben-Hur, M. Effects of rainfall intensity and slope gradient on the dynamics of interrill erosion during soil surface sealing. Catena 2006, 66, 211–220. [Google Scholar] [CrossRef]
- Weiler, E.B.; Tamiosso, M.F.; Cruz, J.C.; Reichert, J.M.; Schorr, L.P.B.; Mantovanelli, B.C.; Santos, F.D.; Fantinel, R.A.; Baumhardt, E. Integrated Environmental Management and Planning based on Soil Erosion Susceptibility Scenarios. An. Da Acad. Bras. De Ciências 2021, 93, e20191120. [Google Scholar] [CrossRef] [PubMed]
- Colman, C.B.; Garcia, K.M.P.; Pereira, R.B.; Shinma, E.A.; Lima, F.E.; Gomes, A.O.; Oliveira, P.T.S. Different approaches to estimate the sediment yield in a tropical watershed. Rev. Bras. Recur. Hídricos 2018, 23, e47. [Google Scholar] [CrossRef]
- Silva, M.M.; Oliveira, F.A.; Santana, A.C. Mudanças na dinâmica de uso das florestas secundárias em Altamira, Estado do Pará, Brasil. Rev. Ciênc. Agrár. 2015, 58, 176–183. [Google Scholar] [CrossRef]
- Saha, S.; Sarkar, D.; Mondal, P. Assessing and mapping soil erosion risk zone in Ratlam District, central India. Reg. Sustain. 2022, 3, 373–390. [Google Scholar] [CrossRef]
- Silva, R.M.; Montenegro, S.M.G.L.; Santos, C.A.G. Integration of GIS and remote sensing for estimation of soil loss and prioritization of critical sub-catchments: A case study of Tapacurá catchment. Nat. Hazards 2012, 62, 953–970. [Google Scholar] [CrossRef]
WRB FAO (SiBCS) | Estimated K Value [t ha h ha−1 MJ−1 mm−1] | Source |
---|---|---|
Acrisols (Argissolo Vermelho amarelo) | 0.031 | Carvalho Filho et al. [44] |
Solonchaks (Gleissolo Sálico) | 0.005 | Carvalho Filho et al. [44] |
Ferrasols (Latossolo Amarelo) | 0.026 | Carvalho Filho et al. [44] |
Arenosols (Neossolo Quartzarênico) | 0.108 | Carvalho Filho et al. [44] |
Plinthosols (Plintossolo Háplico) | 0.030 | Farinasso et al. [14] |
Land Use | Description | C Factor | P Factor |
---|---|---|---|
Agricultural annual | Extensive areas with the predominance of annual cycle agriculture. | 0.082000 | 1 |
Unobserved area | Areas whose interpretation was made impossible by the presence of clouds and their shadows. | 0.070000 | 1 |
Urban area | Urban spots resulting from the population concentration formation of villages, towns, or cities. | 0.000000 | 1 |
Deforestation | Areas mapped as deforestation in the specific year. | 0.000700 | 1 |
Forest | Arboreal vegetation has little or no change, with canopy formation. | 0.010000 | 1 |
Water bodies | Surface water is formed from water bodies. | 0.000000 | 1 |
Mining | Mineral extraction areas with the presence of clearings and exposed soils. | 1.000000 | 1 |
Occupancy mosaic | Areas represented by the association of different modalities of land use. | 0.007000 | 1 |
Non-forest | Non-forest natural plant formation “campinas” or “campinaranas” mapped by the PRODES (Monitoring Brazilian Amazon Forest from Satellite). | 0.000001 | 1 |
Clean pasture | Pasture areas with grasses between 90% and 100%. | 0.007000 | 1 |
Dirty pasture | Pasture areas with grasses between 50% and 80%. | 0.014000 | 1 |
Reforestation | Areas characterized by the homogeneous planting of tree species. | 0.032400 | 1 |
Pasture regeneration | Areas present after clear-cutting the natural vegetation and developing some agropastoral activity. | 0.061000 | 1 |
Secondary vegetation | Areas after the total suppression of forest vegetation, with advanced processes of regeneration. | 0.012000 | 1 |
Others | Areas that do not fit into the above categories. | 0.000001 | 1 |
Soil Order (WRB/FAO) | SiBCS Equivalent | T Value (t ha−1 yr−1) | Method (1) |
---|---|---|---|
Ferralsols | Latossolos | 12.73 | III |
Acrisols | Argissolos | 8.61 | III |
Arenosols | Neossolos | 10.48 | III |
Solonchaks | Gleissolos | 14.14 | III |
Rank | Soil Erosion Risk (t ha−1 yr−1) | Risk Class | Area (%) | Area (ha) | Total Annual Soil Loss (t yr−1) | Total Annual Soil Loss (%) | Conservation Priority |
---|---|---|---|---|---|---|---|
6 | 0.0–2.5 | Slight | 81.14 | 183,837.53 | 165,466.12 | 17.0 | Sixth |
5 | 2.5–5.0 | Slight to moderate | 2.97 | 6728.65 | 199,666.16 | 20.0 | Fifth |
4 | 5.0–10.0 | Moderate | 11.88 | 26,922.36 | 188,161.58 | 19.0 | Fourth |
3 | 10.0–15.0 | Moderate to high | 0.93 | 2109.11 | 244,995.91 | 25.0 | Third |
2 | 15.0–25.0 | High | 0.03 | 61.25 | 10,802.05 | 1.0 | Second |
1 | 25.0–100.0 | Very high | 3.05 | 6912.87 | 176,355.09 | 18.0 | First |
Pluviometric Station | Mean Annual Rainfall (mm) | Coefficient of Determination (R2) | Status |
---|---|---|---|
Bragança | 1714.2 | 0.6638 | Medium fitting |
Capitão Poço | 1978.0 | 0.6434 | Medium fitting |
Marabá | 1496.0 | 0.6889 | Medium fitting |
Paragominas | 1457.1 | 0.7013 | Strong fitting |
Rondon do Pará | 1513.7 | 0.7083 | Strong fitting |
Salinópolis | 2167.9 | 0.6851 | Medium fitting |
Soure | 2458.1 | 0.7718 | Strong fitting |
Tomé-Açú | 2147.1 | 0.7324 | Strong fitting |
Tucuruí | 1861.4 | 0.7635 | Strong fitting |
Study Area/Region | Mean Annual Rainfall (mm) | Mean Annual Soil Loss (t ha−1 yr−1) | Reference |
---|---|---|---|
Caeté River Basin | 1865.94 | 2.0 | This study |
Grande River Basin | 1356–1750 | 5.0 | Beskow et al. [54] |
Taboco River Basin | 1369 | 0.5 | Cunha et al. [55] |
Amazon River Basin | 2205 | 0.9 | Lense et al. [22] |
Guariroba Basin | 1400 | 1.7 | Colman et al. [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, A.d.S.; Silva Júnior, J.F.d.; Santos, L.d.S.; Alencar Sobrinho, R.J.; Amorim, E.C.; Fernandes, G.S.T.; Silva, E.F.d.; Silva, T.G.F.d.; de Lima, J.L.M.P.; Jardim, A.M.d.R.F. Identification of Priority Areas for the Control of Soil Erosion and the Influence of Terrain Factors Using RUSLE and GIS in the Caeté River Basin, Brazilian Amazon. Earth 2025, 6, 35. https://doi.org/10.3390/earth6020035
Santos AdS, Silva Júnior JFd, Santos LdS, Alencar Sobrinho RJ, Amorim EC, Fernandes GST, Silva EFd, Silva TGFd, de Lima JLMP, Jardim AMdRF. Identification of Priority Areas for the Control of Soil Erosion and the Influence of Terrain Factors Using RUSLE and GIS in the Caeté River Basin, Brazilian Amazon. Earth. 2025; 6(2):35. https://doi.org/10.3390/earth6020035
Chicago/Turabian StyleSantos, Alessandra dos Santos, João Fernandes da Silva Júnior, Lívia da Silva Santos, Rômulo José Alencar Sobrinho, Eduarda Cavalcante Amorim, Gabriel Siqueira Tavares Fernandes, Elania Freire da Silva, Thieres George Freire da Silva, João L. M. P. de Lima, and Alexandre Maniçoba da Rosa Ferraz Jardim. 2025. "Identification of Priority Areas for the Control of Soil Erosion and the Influence of Terrain Factors Using RUSLE and GIS in the Caeté River Basin, Brazilian Amazon" Earth 6, no. 2: 35. https://doi.org/10.3390/earth6020035
APA StyleSantos, A. d. S., Silva Júnior, J. F. d., Santos, L. d. S., Alencar Sobrinho, R. J., Amorim, E. C., Fernandes, G. S. T., Silva, E. F. d., Silva, T. G. F. d., de Lima, J. L. M. P., & Jardim, A. M. d. R. F. (2025). Identification of Priority Areas for the Control of Soil Erosion and the Influence of Terrain Factors Using RUSLE and GIS in the Caeté River Basin, Brazilian Amazon. Earth, 6(2), 35. https://doi.org/10.3390/earth6020035