UFORE-D Modeling of Urban Tree Influence on Particulate Matter Concentrations in a High-Altitude Latin American Megacity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Site
2.2. Information Collection
2.3. Information Analysis
3. Results
3.1. PM Removal Model
3.2. PM Removal Simulation Scenarios
4. Discussion
4.1. PM Removal Model
4.2. PM Removal Simulation Scenarios
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ren, Z.; Liu, X.; Liu, T.; Chen, D.; Jiao, K.; Wang, X.; Suo, J.; Yang, H.; Liao, J.; Ma, L. Effect of Ambient Fine Particulates (PM2.5) on Hospital Admissions for Respiratory and Cardiovascular Diseases in Wuhan, China. Respir. Res. 2021, 22, 128. [Google Scholar] [CrossRef] [PubMed]
- Dastoorpoor, M.; Riahi, A.; Yazdaninejhad, H.; Borsi, S.H.; Khanjani, N.; Khodadadi, N.; Mohammadi, M.J.; Aghababaeian, H. Exposure to Particulate Matter and Carbon Monoxide and Cause-Specific Cardiovascular-Respiratory Disease Mortality in Ahvaz. Toxin Rev. 2021, 40, 1362–1372. [Google Scholar] [CrossRef]
- Gryech, I.; Ghogho, M.; Mahraoui, C.; Kobbane, A. An Exploration of Features Impacting Respiratory Diseases in Urban Areas. Int. J. Environ. Res. Public Health 2022, 19, 3095. [Google Scholar] [CrossRef]
- Ochoa-Alvarado, L.M.; Zafra-Mejía, C.A.; Rondón-Quintana, H.A. Multitemporal Analysis of the Influence of PM10 on Human Mortality According to Urban Land Cover. Atmosphere 2022, 13, 1949. [Google Scholar] [CrossRef]
- Zhang, L.; Wilson, J.P.; Zhao, N.; Zhang, W.; Wu, Y. The Dynamics of Cardiovascular and Respiratory Deaths Attributed to Long-Term PM2.5 Exposures in Global Megacities. Sci. Total Environ. 2022, 842, 156951. [Google Scholar] [CrossRef]
- Bhunia, G.S.; Ghosh, A.; Shit, P.K. Comprehensive Spatio-Temporal Analysis of Ambient Air Quality of Kolkata Municipal Corporation, Kolkata (West Bengal, India) during 2017–2020. Arab. J. Geosci. 2022, 15, 1782. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, J.; Huang, X.; Li, H.; Dong, G.; Wei, S. Characteristics and Pollution Formation Mechanism of Atmospheric Fine Particles in the Megacity of Chengdu, China. Atmos. Res. 2022, 273, 106172. [Google Scholar] [CrossRef]
- Wu, C.; Wang, H.; Cai, W.; He, H.; Ni, A.; Peng, Z. Impact of the COVID-19 Lockdown on Roadside Traffic-Related Air Pollution in Shanghai, China. Build. Environ. 2021, 194, 107718. [Google Scholar] [CrossRef]
- Pai, S.J.; Carter, T.S.; Heald, C.L.; Kroll, J.H. Updated World Health Organization Air Quality Guidelines Highlight the Importance of Non-Anthropogenic PM2.5. Environ. Sci. Technol. Lett. 2022, 9, 501–506. [Google Scholar] [CrossRef]
- Kim, M.-J.; Chang, Y.-S.; Kim, S.-M. Impact of Income, Density, and Population Size on PM2.5 Pollutions: A Scaling Analysis of 254 Large Cities in Six Developed Countries. Int. J. Environ. Res. Public Health 2021, 18, 9019. [Google Scholar] [CrossRef]
- Han, C.; Xu, R.; Ye, T.; Xie, Y.; Zhao, Y.; Liu, H.; Yu, W.; Zhang, Y.; Li, S.; Zhang, Z.; et al. Mortality Burden Due to Long-Term Exposure to Ambient PM2.5 above the New WHO Air Quality Guideline Based on 296 Cities in China. Environ. Int. 2022, 166, 107331. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, T.; Sun, F.; Song, X.; Zhang, Y.; Huang, F.; Yuan, C.; Yu, H.; Zhang, G.; Qi, F.; et al. The Relationship between Particulate Matter Retention Capacity and Leaf Surface Micromorphology of Ten Tree Species in Hangzhou, China. Sci. Total Environ. 2021, 771, 144812. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Kumar, M.; Bauddh, K.; Singh, A.; Singh, P.; Madhav, S.; Shukla, S.K. Environmental Impacts of Air Pollution and Its Abatement by Plant Species: A Comprehensive Review. Environ. Sci. Pollut. Res. 2023, 30, 79587–79616. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Yin, S.; Zhang, X.; Lyu, J.; Zhang, Y.; Zhu, Y.; Yan, J. A High-Resolution Study of PM2.5 Accumulation inside Leaves in Leaf Stomata Compared with Non-Stomatal Areas Using Three-Dimensional X-Ray Microscopy. Sci. Total Environ. 2022, 852, 158543. [Google Scholar] [CrossRef]
- Rodríguez-Santamaría, K.; Zafra-Mejía, C.A.; Rondón-Quintana, H.A. Macro-Morphological Traits of Leaves for Urban Tree Selection for Air Pollution Biomonitoring: A Review. Biosensors 2022, 12, 812. [Google Scholar] [CrossRef]
- Ossola, R.; Farmer, D. The Chemical Landscape of Leaf Surfaces and Its Interaction with the Atmosphere. Chem. Rev. 2024, 124, 5764–5794. [Google Scholar] [CrossRef]
- Xue, W.; Lin, Y.; Sun, Z.; Long, Y.; Chen, D.; Yin, S. Effects of Leaf Trait Variability on PM Retention: A Systematic Review. Atmosphere 2025, 16, 170. [Google Scholar] [CrossRef]
- Zafra-Mejía, C.; Suárez-López, J.; Rondón-Quintana, H. Analysis of Particulate Matter Concentration Intercepted by Trees of a Latin-American Megacity. Forests 2021, 12, 723. [Google Scholar] [CrossRef]
- Maison, A.; Lugon, L.; Park, S.-J.; Boissard, C.; Faucheux, A.; Gros, V.; Kalalian, C.; Kim, Y.; Leymarie, J.; Petit, J.-E.; et al. Contrasting Effects of Urban Trees on Air Quality: From the Aerodynamic Effects in Streets to Impacts of Biogenic Emissions in Cities. Sci. Total Environ. 2024, 946, 174116. [Google Scholar] [CrossRef]
- McDonald, A.G.; Bealey, W.J.; Fowler, D.; Dragosits, U.; Skiba, U.; Smith, R.I.; Donovan, R.G.; Brett, H.E.; Hewitt, C.N.; Nemitz, E. Quantifying the Effect of Urban Tree Planting on Concentrations and Depositions of PM10 in Two UK Conurbations. Atmos. Environ. 2007, 41, 8455–8467. [Google Scholar] [CrossRef]
- Kroeger, T.; McDonald, R.I.; Boucher, T.; Zhang, P.; Wang, L. Where the People Are: Current Trends and Future Potential Targeted Investments in Urban Trees for PM10 and Temperature Mitigation in 27 U.S. Cities. Landsc. Urban Plan. 2018, 177, 227–240. [Google Scholar] [CrossRef]
- Pachón, J.E.; Galvis, B.; Lombana, O.; Carmona, L.G.; Fajardo, S.; Rincón, A.; Meneses, S.; Chaparro, R.; Nedbor-Gross, R.; Henderson, B. Development and Evaluation of a Comprehensive Atmospheric Emission Inventory for Air Quality Modeling in the Megacity of Bogotá. Atmosphere 2018, 9, 49. [Google Scholar] [CrossRef]
- Blanco-Becerra, L.C.; Gáfaro-Rojas, A.I.; Rojas-Roa, N.Y. Influence of Precipitation Scavenging on the PM2.5/PM10 Ratio at the Kennedy Locality of Bogota, Colombia. Rev. Fac. Ing. Univ. Antioq. 2015, 76, 58–65. [Google Scholar] [CrossRef]
- Kumar, A.; Jiménez, R.; Belalcázar, L.C.; Rojas, N.Y. Application of WRF-Chem Model to Simulate PM10 Concentration over Bogota. Aerosol Air Qual. Res. 2016, 16, 1206–1221. [Google Scholar] [CrossRef]
- Jin, Z.; Velásquez Angel, M.A.; Mura, I.; Franco, J.F. Enriched Spatial Analysis of Air Pollution: Application to the City of Bogotá, Colombia. Front. Environ. Sci. 2022, 10, 966560. [Google Scholar] [CrossRef]
- Vos, P.E.J.; Maiheu, B.; Vankerkom, J.; Janssen, S. Improving Local Air Quality in Cities: To Tree or Not to Tree? Environ. Pollut. 2013, 183, 113–122. [Google Scholar] [CrossRef]
- Manes, F.; Marando, F.; Capotorti, G.; Blasi, C.; Salvatori, E.; Fusaro, L.; Ciancarella, L.; Mircea, M.; Marchetti, M.; Chirici, G.; et al. Regulating Ecosystem Services of Forests in Ten Italian Metropolitan Cities: Air Quality Improvement by PM10 and O3 Removal. Ecol. Indic. 2016, 67, 425–440. [Google Scholar] [CrossRef]
- Velásquez Ciro, D.; Cañón Barriga, J.E.; Hoyos Rincón, I.C. The Removal of PM2.5 by Trees in Tropical Andean Metropolitan Areas: An Assessment of Environmental Change Scenarios. Environ. Monit. Assess 2021, 193, 396. [Google Scholar] [CrossRef]
- Hirabayashi, S.; Kroll, C.N.; Nowak, D.J. Development of a Distributed Air Pollutant Dry Deposition Modeling Framework. Environ. Pollut. 2012, 171, 9–17. [Google Scholar] [CrossRef]
- Nowak, D.J. Improved Air Quality and Other Services from Urban Trees and Forests. In Engineering and Ecosystems: Seeking Synergies Toward a Nature-Positive World; Bakshi, B.R., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 215–245. ISBN 978-3-031-35692-6. [Google Scholar]
- Kacprzak, M.J.; Ellis, A.; Fijałkowski, K.; Kupich, I.; Gryszpanowicz, P.; Greenfield, E.; Nowak, D. Urban Forest Species Selection for Improvement of Ecological Benefits in Polish Cities—The Actual and Forecast Potential. J. Environ. Manag. 2024, 366, 121732. [Google Scholar] [CrossRef]
- Park, J.; Lee, P.S.-H. Relationship between Remotely Sensed Ambient PM10 and PM2.5 and Urban Forest in Seoul, South Korea. Forests 2020, 11, 1060. [Google Scholar] [CrossRef]
- Zhao, Y.; Lei, S. Research on the Inversion Method of Dust Retention in Grassland Plant Canopies Based on UAV-Borne Hyperspectral Data. Land 2025, 14, 458. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E. The Urban Forest Effects (UFORE) Model: Quantifying Urban Forest Structure and Functions. In Integrated Tools for Natural Resources Inventories in the 21st Century; Hansen, M., Burk, T., Eds.; Gen. Tech. Rep. NC-212; U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station: St. Paul, MN, USA, 2000; Volume 212, pp. 714–720. [Google Scholar]
- Nowak, D.; Crane, D.; Stevens, J.; Hoehn, R.; Walton, J.; Bond, J. A Ground-Based Method of Assessing Urban Forest Structure and Ecosystem Services. Arboric. Urban For. 2008, 34, 347–358. [Google Scholar] [CrossRef]
- Tiwary, A.; Sinnett, D.; Peachey, C.; Chalabi, Z.; Vardoulakis, S.; Fletcher, T.; Leonardi, G.; Grundy, C.; Azapagic, A.; Hutchings, T.R. An Integrated Tool to Assess the Role of New Planting in PM10 Capture and the Human Health Benefits: A Case Study in London. Environ. Pollut. 2009, 157, 2645–2653. [Google Scholar] [CrossRef]
- Bottalico, F.; Travaglini, D.; Chirici, G.; Garfì, V.; Giannetti, F.; De Marco, A.; Fares, S.; Marchetti, M.; Nocentini, S.; Paoletti, E.; et al. A Spatially-Explicit Method to Assess the Dry Deposition of Air Pollution by Urban Forests in the City of Florence, Italy. Urban For. Urban Green. 2017, 27, 221–234. [Google Scholar] [CrossRef]
- Watson, A.S.; Bai, R.S. Studies on Ecosystem Services and Air-Pollution Mitigation in Tropical Urban Vegetation Using i-Tree Eco Model. Environ. Dev. Sustain. 2025. [Google Scholar] [CrossRef]
- Document Display|NEPIS|US EPA. Available online: https://nepis.epa.gov/Exe/ZyNET.exe/2000F6VS.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2000+Thru+2005&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C00thru05%5CTxt%5C00000009%5C2000F6VS.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL (accessed on 25 March 2025).
- Hess, A.F.; Minatti, M.; Costa, E.A.; Schorr, L.P.B.; da Rosa, G.T.; de Arruda Souza, I.; Borsoi, G.A.; Liesenberg, V.; Stepka, T.F.; Abatti, R. Height-to-Diameter Ratios with Temporal and Dendro/Morphometric Variables for Brazilian Pine in South Brazil. J. For. Res. 2021, 32, 191–202. [Google Scholar] [CrossRef]
- Taylor, B.T.; Fernando, P.; Bauman, A.E.; Williamson, A.; Craig, J.C.; Redman, S. Measuring the Quality of Public Open Space Using Google Earth. Am. J. Prev. Med. 2011, 40, 105–112. [Google Scholar] [CrossRef]
- Boulos, M.N.K. Web GIS in Practice III: Creating a Simple Interactive Map of England’s Strategic Health Authorities Using Google Maps API, Google Earth KML, and MSN Virtual Earth Map Control. Int. J. Health Geogr. 2005, 4, 22. [Google Scholar] [CrossRef]
- Nichol, J.E.; Wong, M.S.; Wang, J. A 3D Aerosol and Visibility Information System for Urban Areas Using Remote Sensing and GIS. Atmos. Environ. 2010, 44, 2501–2506. [Google Scholar] [CrossRef]
- Kuang, W. Mapping Global Impervious Surface Area and Green Space within Urban Environments. Sci. China Earth Sci. 2019, 62, 1591–1606. [Google Scholar] [CrossRef]
- Weng, Q. Remote Sensing of Impervious Surfaces in the Urban Areas: Requirements, Methods, and Trends. Remote Sens. Environ. 2012, 117, 34–49. [Google Scholar] [CrossRef]
- Belachsen, I.; Broday, D.M. Imputation of Missing PM2.5 Observations in a Network of Air Quality Monitoring Stations by a New kNN Method. Atmosphere 2022, 13, 1934. [Google Scholar] [CrossRef]
- Burhanuddin, S.N.Z.A.; Deni, S.M.; Ramli, N.M. Imputation of Missing Rainfall Data Using Revised Normal Ratio Method. Adv. Sci. Lett. 2017, 23, 10981–10985. [Google Scholar] [CrossRef]
- Junger, W.L.; Ponce de Leon, A. Imputation of Missing Data in Time Series for Air Pollutants. Atmos. Environ. 2015, 102, 96–104. [Google Scholar] [CrossRef]
- Junninen, H.; Niska, H.; Tuppurainen, K.; Ruuskanen, J.; Kolehmainen, M. Methods for Imputation of Missing Values in Air Quality Data Sets. Atmos. Environ. 2004, 38, 2895–2907. [Google Scholar] [CrossRef]
- Hua, V.; Nguyen, T.; Dao, M.-S.; Nguyen, H.D.; Nguyen, B.T. The Impact of Data Imputation on Air Quality Prediction Problem. PLoS ONE 2024, 19, e0306303. [Google Scholar] [CrossRef]
- Bickici Arikan, B.; Kahya, E. Homogeneity Revisited: Analysis of Updated Precipitation Series in Turkey. Theor. Appl. Clim. 2019, 135, 211–220. [Google Scholar] [CrossRef]
- Acero, A.O.C. Manual de Coberturas Vegetales de Bogotá D. C. Jardín Botánico de Bogotá. Available online: https://jbb.gov.co/nosotros/publicaciones/manual-de-coberturas-vegetales-de-bogota-d-c/ (accessed on 25 March 2023).
- von Gadow, K.; Álvarez González, J.G.; Zhang, C.; Pukkala, T.; Zhao, X. Designing Forest Ecosystems. In Sustaining Forest Ecosystems; von Gadow, K., Álvarez González, J.G., Zhang, C., Pukkala, T., Zhao, X., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 281–354. ISBN 978-3-030-58714-7. [Google Scholar]
- Bataineh, M.; Childs, E. Competition Effects on Growth and Crown Dimensions of Shortleaf and Loblolly Pine in Mature, Natural-Origin, Pine–Hardwood Mixtures of the Upper West Gulf Coastal Plain of Arkansas, USA: A Neighborhood Analysis. Forests 2021, 12, 935. [Google Scholar] [CrossRef]
- Burkhart, H.E.; Avery, T.E.; Bullock, B.P. Forest Measurements, 6th ed.; Waveland Pr Inc.: Long Grove, IL, USA, 2018; ISBN 978-1-4786-3618-2. [Google Scholar]
- Cooke, R.M.; Kurowicka, D. Uncertainty Analysis and Dependence Modeling. In Wiley StatsRef: Statistics Reference Online; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; ISBN 978-1-118-44511-2. [Google Scholar]
- Riondato, E.; Pilla, F.; Sarkar Basu, A.; Basu, B. Investigating the Effect of Trees on Urban Quality in Dublin by Combining Air Monitoring with I-Tree Eco Model. Sustain. Cities Soc. 2020, 61, 102356. [Google Scholar] [CrossRef]
- Russo, A.; J Escobedo, F.; Zerbe, S. Quantifying the Local-Scale Ecosystem Services Provided by Urban Treed Streetscapes in Bolzano, Italy. AIMS Environ. Sci. 2016, 3, 58–76. [Google Scholar] [CrossRef]
- Observatorio Ambiental Árboles por Habitante—APH—Cifras e Indicadores de Medio Ambiente en Bogotá. Available online: https://oab.ambientebogota.gov.co/arboles-por-habitante/ (accessed on 26 March 2025).
- Jayasooriya, V.M.; Ng, A.W.M.; Muthukumaran, S.; Perera, B.J.C. Green Infrastructure Practices for Improvement of Urban Air Quality. Urban For. Urban Green. 2017, 21, 34–47. [Google Scholar] [CrossRef]
- Grylls, T.; van Reeuwijk, M. How Trees Affect Urban Air Quality: It Depends on the Source. Atmos. Environ. 2022, 290, 119275. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air Pollution Removal by Urban Trees and Shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Selmi, W.; Weber, C.; Rivière, E.; Blond, N.; Mehdi, L.; Nowak, D. Air Pollution Removal by Trees in Public Green Spaces in Strasbourg City, France. Urban For. Urban Green. 2016, 17, 192–201. [Google Scholar] [CrossRef]
- Eisenman, T.S.; Churkina, G.; Jariwala, S.P.; Kumar, P.; Lovasi, G.S.; Pataki, D.E.; Weinberger, K.R.; Whitlow, T.H. Urban Trees, Air Quality, and Asthma: An Interdisciplinary Review. Landsc. Urban Plan. 2019, 187, 47–59. [Google Scholar] [CrossRef]
- Tallis, M.; Taylor, G.; Sinnett, D.; Freer-Smith, P. Estimating the Removal of Atmospheric Particulate Pollution by the Urban Tree Canopy of London, under Current and Future Environments. Landsc. Urban Plan. 2011, 103, 129–138. [Google Scholar] [CrossRef]
- Vilela Lozano, J. Distribución del arbolado urbano en la ciudad de Fuenlabrada y su contribución a la calidad del aire. Ciudad Y Territ. Estud. Territ. 2004, 140, 419–430. [Google Scholar]
- Arroyave-Maya, M.d.P.; Posada-Posada, M.I.; Nowak, D.J.; Hoehn, R.E.; Arroyave-Maya, M.d.P.; Posada-Posada, M.I.; Nowak, D.J.; Hoehn, R.E. Remoción de contaminantes atmosféricos por el bosque urbano en el valle de Aburrá. Colomb. For. 2019, 22, 5–16. [Google Scholar] [CrossRef]
- Yang, J.; McBride, J.; Zhou, J.; Sun, Z. The Urban Forest in Beijing and Its Role in Air Pollution Reduction. Urban For. Urban Green. 2005, 3, 65–78. [Google Scholar] [CrossRef]
- Fusaro, L.; Marando, F.; Sebastiani, A.; Capotorti, G.; Blasi, C.; Copiz, R.; Congedo, L.; Munafò, M.; Ciancarella, L.; Manes, F. Mapping and Assessment of PM10 and O3 Removal by Woody Vegetation at Urban and Regional Level. Remote Sens. 2017, 9, 791. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.; Qiu, S.; Peng, J. Using the Modified I-Tree Eco Model to Quantify Air Pollution Removal by Urban Vegetation. Sci. Total Environ. 2019, 688, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Jeon, J.; Jung, H.; Kim, T.K.; Hong, J.; Jeon, G.-S.; Kim, H.S. PM2.5 Reduction Capacities and Their Relation to Morphological and Physiological Traits in 13 Landscaping Tree Species. Urban For. Urban Green. 2022, 70, 127526. [Google Scholar] [CrossRef]
- Gaglio, M.; Pace, R.; Muresan, A.N.; Grote, R.; Castaldelli, G.; Calfapietra, C.; Fano, E.A. Species-Specific Efficiency in PM2.5 Removal by Urban Trees: From Leaf Measurements to Improved Modeling Estimates. Sci. Total Environ. 2022, 844, 157131. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chang, Y.; Yan, P. Ranking the Suitability of Common Urban Tree Species for Controlling PM2.5 Pollution. Atmos. Pollut. Res. 2015, 6, 267–277. [Google Scholar] [CrossRef]
- Grote, R.; Samson, R.; Alonso, R.; Amorim, J.H.; Cariñanos, P.; Churkina, G.; Fares, S.; Thiec, D.L.; Niinemets, Ü.; Mikkelsen, T.N.; et al. Functional Traits of Urban Trees: Air Pollution Mitigation Potential. Front. Ecol. Environ. 2016, 14, 543–550. [Google Scholar] [CrossRef]
- Popek, R.; Fornal-Pieniak, B.; Chyliński, F.; Pawełkowicz, M.; Bobrowicz, J.; Chrzanowska, D.; Piechota, N.; Przybysz, A. Not Only Trees Matter—Traffic-Related PM Accumulation by Vegetation of Urban Forests. Sustainability 2022, 14, 2973. [Google Scholar] [CrossRef]
- Miao, C.; Yu, S.; Hu, Y.; Liu, M.; Yao, J.; Zhang, Y.; He, X.; Chen, W. Seasonal Effects of Street Trees on Particulate Matter Concentration in an Urban Street Canyon. Sustain. Cities Soc. 2021, 73, 103095. [Google Scholar] [CrossRef]
- Tiwari, A.; Kumar, P. Integrated Dispersion-Deposition Modelling for Air Pollutant Reduction via Green Infrastructure at an Urban Scale. Sci. Total Environ. 2020, 723, 138078. [Google Scholar] [CrossRef]
Characteristics | CSE | CAR | KEN | USQ | SCR | MIN | |
---|---|---|---|---|---|---|---|
Location | Lat. (N) | 4°35′44.2″ | 4°39′30.5″ | 4°37′30.2″ | 4°42′37.3″ | 4°34′21.1″ | 4°37′31.8″ |
Long. (W) | 74°8′54.9″ | 74°5′2.3″ | 74°9′40.8″ | 74°1′49.5″ | 74°5′1.7″ | 74°4′1.1″ | |
Alt. (masl) | 2563 | 2577 | 2580 | 2570 | 2688 | 2621 | |
GH (m) | 3.00 | 0.00 | 3.00 | 10.0 | 0.00 | 15.0 | |
ZT | Urban | Urban | Urban | Urban | Urban | Urban | |
ST | Traffic/Industrial | Background | Background | Background | Background | Traffic | |
SL | Rooftop | Green zone | Green zone | Rooftop | Green zone | Rooftop | |
SPH (m) | 4.20 | 4.05 | 7.71 | 16.5 | 4.88 | 4.67 | |
WSH (m) | 13.0 | 10.0 | 10.0 | 19.0 | 10.0 | 19.0 | |
Land cover | Impermeable (%) | 80.2 | 19.1 | 66.9 | 80.6 | 53.6 | 81.3 |
Vegetation (%) | 16.5 | 65.9 | 25.9 | 19.4 | 42.4 | 18.7 | |
Water body (%) | 1.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Uncovered land (%) | 1.80 | 15.0 | 0.00 | 0.00 | 3.93 | 0.00 | |
Urban trees | Trees by locality | 36,045 | 36,245 | 129,241 | 120,279 | 65,813 | 56,433 |
Trees per inhabitant | 0.05 | 0.253 | 0.125 | 0.213 | 0.166 | 0.334 | |
Trees per hectare | 18.65 | 30.47 | 35.84 | 35.76 | 40.4 | 51.61 | |
Air pollutants | PM10 (μg/m3) | 78.9 | 32.6 | 64.9 | 37.2 | 31.9 | 38.0 |
PM2.5 (μg/m3) | 30.6 | 17.9 | 28.3 | 13.1 | 10.8 | 16.6 | |
Climatology | WS (m/s) | 1.36 | 1.25 | 2.34 | 1.57 | 1.54 | 1.24 |
WD (°) | 175 | 191 | 190 | 143 | 128 | 162 | |
T (°C) | 15.9 | 15.1 | 16.4 | 14.7 | 13.7 | - | |
P (mm) | 755 | 995 | 1012 | 954 | 1014 | 801 | |
SR (W/m2) | - | 151 | 165 | - | 217 | - | |
RH (%) | - | 66.0 | 61.0 | - | 67.0 | - |
N. | Scenario | CAR | CSE | ||||
---|---|---|---|---|---|---|---|
CA | LAI | CA | LAI | ||||
(m2) | (%) | (m2/m2) | (m2) | (%) | (m2/m2) | ||
E1 | Decline | 10,376 | 8.30 | 2.00 | 1211 | 1.00 | 2.00 |
E2 | Reference | 14,989 | 11.9 | 3.10 | 1677 | 1.30 | 2.86 |
E3 | Increase | 17,762 | 14.1 | 4.00 | 1947 | 1.60 | 4.00 |
E4 | Brooklyn | 119,918 | 95.40 | 4.00 | 12,266 | 9.80 | 4.00 |
Monitoring Stations | CSE | CAR | KEN | MIN | SCR | USQ |
---|---|---|---|---|---|---|
CA (Ha) | 0.168 | 1.499 | 0.265 | 1.756 | 0.553 | 0.437 |
PM10 removal (Ton/year) | 0.010 (0.014%) | 0.035 (0.138%) | 0.010 (0.021%) | 0.035 (0.014%) | 0.012 (0.045%) | 0.008 (0.035%) |
PM10 removal (Ton/[Ha × year]) | 0.062 | 0.023 | 0.039 | 0.020 | 0.022 | 0.018 |
PM2.5 removal (Tons/year) | 0.0025 (0.010%) | 0.0122 (0.071%) | 0.0026 (0.019%) | 0.0116 (0.080%) | 0.0044 (0.031%) | 0.0033 (0.024%) |
PM2.5 removal (Ton/[Ha × year]) | 0.0147 | 0.0081 | 0.0097 | 0.0066 | 0.0080 | 0.0075 |
CAR | ||||||||||||
E1: Decline (–) | E2: Reference | E3: Increase (+) | E4: Brooklyn | |||||||||
CA (%) | 8.26 | 11.9 | 14.1 | 95.4 | ||||||||
CA (m2) | 10,376 | 14,990 | 17,762 | 119,918 | ||||||||
Percentage of annual improvement—air quality (I) | 0.0957 | 0.138 | 0.164 | 1.091 | ||||||||
PM removal (tons/year) | 0.0241 | 0.0348 | 0.0412 | 0.2783 | ||||||||
Percentage of improvement vs. E2 (%) | −30.8 | - | 18.5 | 700.0 | ||||||||
E1 | E1 (Q1) | E1 (Q3) | E1 | E1 (Q1) | E1 (Q3) | E1 | E1 (Q1) | E1 (Q3) | E1 | E1 (Q1) | E1 (Q3) | |
IAF (m2/m2) | 3.10 | 2.00 | 4.00 | 3.10 | 2.00 | 4.00 | 3.10 | 2.00 | 4.00 | 3.10 | 2.00 | 4.00 |
Percentage of annual improvement—air quality (I) | 0.0957 | 0.0618 | 0.123 | 0.138 | 0.0892 | 0.178 | 0.164 | 0.106 | 0.211 | 1.091 | 0.708 | 1.402 |
PM removal (tons/year) | 0.0241 | 0.0155 | 0.0311 | 0.0348 | 0.0224 | 0.0449 | 0.0412 | 0.0266 | 0.0532 | 0.2783 | 0.1795 | 0.3591 |
PM removal (ton/[Ha × year]) | 0.0019 | 0.0012 | 0.0025 | 0.0028 | 0.0018 | 0.0036 | 0.0033 | 0.0021 | 0.0042 | 0.0221 | 0.0143 | 0.0286 |
Percentage of improvement vs. E2 (%) | −30.8 | −55.3 | −10.68 | −35.5 | 29.03 | 18.5 | −23.6 | 52.90 | 700.00 | 416.13 | 932.26 | |
CSE | ||||||||||||
E1: Decline (–) | E2: Reference | E3: Increase (+) | E4: Brooklyn | |||||||||
CA (%) | 0.964 | 1.33 | 1.55 | 9.8 | ||||||||
CA (m2) | 1211 | 1677 | 1947 | 12,266 | ||||||||
Percentage of annual improvement—air quality (I) | 0.0103 | 0.014 | 0.017 | 0.105 | ||||||||
PM removal (tons/year) | 0.0075 | 0.0104 | 0.0120 | 0.0757 | ||||||||
Percentage of improvement vs. E2 (%) | −27.8 | - | 16.1 | 631.4 | ||||||||
E1 | E1 (Q1) | E1 (Q3) | E1 | E1 (Q1) | E1 (Q3) | E1 | E1 (Q1) | E1 (Q3) | E1 | E1 (Q1) | E1 (Q3) | |
IAF (m2/m2) | 2.86 | 2.00 | 4.00 | 2.86 | 2.00 | 4.00 | 2.86 | 2.00 | 4.00 | 2.86 | 2.00 | 4.00 |
Percentage of annual improvement—air quality (I) | 0.0103 | 0.0072 | 0.014 | 0.014 | 0.0100 | 0.020 | 0.017 | 0.012 | 0.023 | 0.105 | 0.073 | 0.146 |
PM removal (tons/year) | 0.0075 | 0.0052 | 0.0105 | 0.0104 | 0.0072 | 0.0145 | 0.0120 | 0.0084 | 0.0168 | 0.0757 | 0.0530 | 0.1059 |
PM removal (ton/[Ha × year]) | 0.0006 | 0.0004 | 0.0008 | 0.0008 | 0.0006 | 0.0012 | 0.0010 | 0.0007 | 0.0013 | 0.0060 | 0.0042 | 0.0084 |
Percentage of improvement vs. E2 (%) | −27.8 | −49.5 | 1.04 | −30.1 | 39.86 | 16.1 | −18.8 | 62.40 | 631.45 | 411.50 | 923.00 |
CAR | ||||||||||||
E1: Decline (–) | E2: Reference | E3: Increase (+) | E4: Brooklyn | |||||||||
CA (%) | 8.26 | 11.9 | 14.1 | 95.4 | ||||||||
CA (%) | 10,376 | 14,990 | 17,762 | 119,918 | ||||||||
CA (m2) | 0.0473 | 0.068 | 0.081 | 0.542 | ||||||||
Percentage of annual improvement—air quality (I) | 0.0084 | 0.0122 | 0.0144 | 0.0973 | ||||||||
PM removal (tons/year) | −30.8 | - | 18.5 | 700.0 | ||||||||
Percentage of improvement vs. E2 (%) | E1 | E1 (Q1) | E1 (Q3) | E1 | E1 (Q1) | E1 (Q3) | E1 | E1 (Q1) | E1 (Q3) | E1 | E1 (Q1) | E1 (Q3) |
3.10 | 2.00 | 4.00 | 3.10 | 2.00 | 4.00 | 3.10 | 2.00 | 4.00 | 3.10 | 2.00 | 4.00 | |
IAF (m2/m2) | 0.0473 | 0.0302 | 0.061 | 0.068 | 0.0436 | 0.088 | 0.081 | 0.052 | 0.105 | 0.542 | 0.347 | 0.700 |
Percentage of annual improvement—air quality (I) | 0.0084 | 0.0054 | 0.0109 | 0.0122 | 0.0078 | 0.0157 | 0.0144 | 0.0092 | 0.0186 | 0.0973 | 0.0620 | 0.1257 |
PM removal (tons/year) | 0.0007 | 0.0004 | 0.0009 | 0.0010 | 0.0006 | 0.0013 | 0.0011 | 0.0007 | 0.0015 | 0.0077 | 0.0049 | 0.0100 |
PM removal (ton/[Ha × year]) | −30.8 | −55.8 | −10.50 | −36.2 | 29.29 | 18.5 | −24.4 | 53.20 | 700.00 | 410.30 | 934.30 | |
CSE | ||||||||||||
E1: Decline (–) | E2: Reference | E3: Increase (+) | E4: Brooklyn | |||||||||
CA (%) | 0.96 | 1.33 | 1.5 | 9.8 | ||||||||
CA (m2) | 1211 | 1677 | 1947 | 12,266 | ||||||||
Percentage of annual improvement—air quality (I) | 0.0044 | 0.006 | 0.007 | 0.045 | ||||||||
PM removal (tons/year) | 0.0018 | 0.0025 | 0.0029 | 0.0180 | ||||||||
Percentage of improvement vs. E2 (%) | −27.8 | - | 16.1 | 631.4 | ||||||||
E1 | E1 (Q1) | E1 (Q3) | E1 | E1 (Q1) | E1 (Q3) | E1 | E1 (Q1) | E1 (Q3) | E1 | E1 (Q1) | E1 (Q3) | |
IAF (m2/m2) | 2.86 | 2.00 | 4.00 | 2.86 | 2.00 | 4.00 | 2.86 | 2.00 | 4.00 | 2.86 | 2.00 | 4.00 |
Percentage of annual improvement—air quality (I) | 0.0044 | 0.0030 | 0.006 | 0.006 | 0.0042 | 0.008 | 0.007 | 0.005 | 0.010 | 0.045 | 0.031 | 0.063 |
PM removal (tons/year) | 0.0018 | 0.0012 | 0.0025 | 0.0025 | 0.0017 | 0.0034 | 0.0029 | 0.0020 | 0.0040 | 0.0180 | 0.0125 | 0.0252 |
PM removal (ton/[Ha × year]) | 0.0001 | 0.0001 | 0.0002 | 0.0002 | 0.0001 | 0.0003 | 0.0002 | 0.0002 | 0.0003 | 0.0014 | 0.0010 | 0.0020 |
Percentage of improvement vs. E2 (%) | −27.8 | −49.7 | 1.32 | −30.4 | 40.25 | 16.1 | −19.2 | 62.85 | 631.45 | 409.13 | 925.87 |
Variable | Station/Air Pollutant | |||
---|---|---|---|---|
CAR/PM10 | R2 | CSE/PM10 | R2 | |
Average improvement—I (%) | I = −0.13 + (0.011 × CA) + (0.043 × LAI) | 0.912 | I = −0.016 + (0.013 × CA) + (0.005 × LAI) | 0.909 |
Removal—R (tons/year) | R = −0.033 + (0.003 × CA) + (0.011 × LAI) | 0.912 | R = −0.012 + (0.009 × CA) + (0.003 × LAI) | 0.908 |
CAR/PM2.5 | R2 | CSE/PM2.5 | R2 | |
Average improvement—I (%) | I = −0.065 + (0.006 × CA) + (0.021 × LAI) | 0.911 | I = −0.006 + (0.005 × CA) + (0.002 × LAI) | 0.923 |
Removal—R (tons/year) | R = −0.012 + (0.001 × CA) + (0.004 × LAI) | 0.911 | R = −0.002 + (0.002 × CA) + (0.001 × LAI) | 0.923 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ochoa-Alvarado, L.; Garzón-Gil, J.; Castro-Alzate, S.; Zafra-Mejía, C.A.; Rondón-Quintana, H.A. UFORE-D Modeling of Urban Tree Influence on Particulate Matter Concentrations in a High-Altitude Latin American Megacity. Earth 2025, 6, 36. https://doi.org/10.3390/earth6020036
Ochoa-Alvarado L, Garzón-Gil J, Castro-Alzate S, Zafra-Mejía CA, Rondón-Quintana HA. UFORE-D Modeling of Urban Tree Influence on Particulate Matter Concentrations in a High-Altitude Latin American Megacity. Earth. 2025; 6(2):36. https://doi.org/10.3390/earth6020036
Chicago/Turabian StyleOchoa-Alvarado, Laura, Juan Garzón-Gil, Sergio Castro-Alzate, Carlos Alfonso Zafra-Mejía, and Hugo Alexander Rondón-Quintana. 2025. "UFORE-D Modeling of Urban Tree Influence on Particulate Matter Concentrations in a High-Altitude Latin American Megacity" Earth 6, no. 2: 36. https://doi.org/10.3390/earth6020036
APA StyleOchoa-Alvarado, L., Garzón-Gil, J., Castro-Alzate, S., Zafra-Mejía, C. A., & Rondón-Quintana, H. A. (2025). UFORE-D Modeling of Urban Tree Influence on Particulate Matter Concentrations in a High-Altitude Latin American Megacity. Earth, 6(2), 36. https://doi.org/10.3390/earth6020036