Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,651)

Search Parameters:
Keywords = land degradation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7504 KB  
Article
Historical Trajectories of the Evolved Cropland Features and Their Reshaped Influences on Agricultural Landscapes and Ecosystem Services in China’s Sanjiang Commodity Grain Base
by Tao Pan, Kun Liu, Zherui Yin, Zexian Li and Lin Shi
Land 2026, 15(1), 175; https://doi.org/10.3390/land15010175 (registering DOI) - 16 Jan 2026
Abstract
Drastic cropland expansion and its internal structural changes have had an obvious impact on agricultural landscapes and ecosystem services. However, a prolonged investigation of this effect is still lacking in China’s grain-producing bases, such as Sanjiang Plain. To address this issue, half a [...] Read more.
Drastic cropland expansion and its internal structural changes have had an obvious impact on agricultural landscapes and ecosystem services. However, a prolonged investigation of this effect is still lacking in China’s grain-producing bases, such as Sanjiang Plain. To address this issue, half a century of study on the ‘land trajectory migration–landscape evolution–ecological effect,’ covering the period 1970–2020, was elucidated using the synergistic methodology of spatial analysis technology, the reclamation rate algorithm, the landscape indicator, and the newly established ecosystem service improvement model. Satellite observation results indicate that the cropland area exhibited a substantial expansion trend from 23,672.69 km2 to 42,856.17 km2 from 1970 to 2020, representing a net change of +19,183.48 km2 and a huge growth rate of 81.04%, which led to an obvious improvement in the level of agricultural cultivation. Concurrently, the internal structure of the cropland underwent dramatic restructuring, with rice fields increasing from 6.46% to 53.54%, while upland fields decreased from 93.54% to 46.46%. In different regions, spatially heterogeneous improvements of 2.64–52.47% in agricultural cultivation levels across all cities were observed. From 1970 to 2020, the tracked cropland center of gravity trajectories exhibited a distinct biphasic pattern, initially shifting westward and then followed by a southward transition, accumulating a displacement of 19.39 km2. As for the evolved agricultural landscapes, their integrity has improved (SHDI = −0.08%), accompanied by increased connectivity (CON = +8.82%) and patch edge integrity (LSI = −15.71%) but also by reduced fragmentation (PD = −48.14%). Another important discovery was that the evaluated ecosystem services continuously decreased from 2337.84 × 108 CNY in 1970 to 1654.01 × 108 CNY in 2020, a net loss of −683.84 × 108 CNY and a huge loss rate of 33.65%, accompanied by a center–periphery gradient pattern whereby degradation propagated from the low-value central croplands to the high-value surrounding natural covers. These discoveries will play a significant role in guiding farmland structure reformation, landscape optimization, and ecosystem service improvement. Full article
(This article belongs to the Special Issue Monitoring Ecosystem Services and Biodiversity Under Land Use Change)
Show Figures

Figure 1

16 pages, 4151 KB  
Article
Potential Productivity Model (M3P) as a Planning Tool for Degraded Pastures in the Amazon Deforestation Arc, Brazil
by Pedro Guerreiro Martorano, Carlos Simões Pereira, Lucietta Guerreiro Martorano, Leila Sheila Silva Lisboa, Nelson Ken Narusawa Nakakoji, Carlos Emílio Rocha-Pereira, Carlos Tadeu dos Santos Dias and João Fernandes da Silva-Júnior
World 2026, 7(1), 13; https://doi.org/10.3390/world7010013 - 16 Jan 2026
Abstract
The Amazon Deforestation Arc remains a critical region for environmental governance, where land-use strategies must consider distinct legal and institutional frameworks across the Amazon and Cerrado biomes. This study applies the Potential Productivity Model (M3P), a theoretical radiation-based framework, to estimate the upper [...] Read more.
The Amazon Deforestation Arc remains a critical region for environmental governance, where land-use strategies must consider distinct legal and institutional frameworks across the Amazon and Cerrado biomes. This study applies the Potential Productivity Model (M3P), a theoretical radiation-based framework, to estimate the upper physiological limits of sugarcane (Saccharum officinarum L.) productivity on degraded pastures within the Arc of Deforestation. The model integrates satellite-derived solar radiation with climatic variables to quantify potential productivity under optimal biophysical conditions, providing an objective benchmark for planning-oriented bioenergy assessments. Estimated potential yields range from 153 to 178 t·ha−1·yr−1, consistent with global reference values reported for sugarcane in high-radiation environments and relevant for informing public policies such as Brazil’s Agroecological Zoning of Sugarcane. The results demonstrate that agroclimatic potential alone is insufficient to guide land-use decisions. While degraded pastures associated with the Cerrado biome may accommodate sugarcane cultivation as part of productive land recovery strategies, areas belonging to the Amazon biome require priority actions focused on ecological restoration through agroforestry and integrated crop–livestock–forest systems. Overall, the M3P model offers a scalable and scientifically grounded decision-support framework for strategic planning in environmentally sensitive tropical regions. Full article
Show Figures

Figure 1

27 pages, 11839 KB  
Article
Impact of Tropical Climate Anomalies on Land Cover Changes in Sumatra’s Peatlands, Indonesia
by Agus Dwi Saputra, Muhammad Irfan, Mokhamad Yusup Nur Khakim and Iskhaq Iskandar
Sustainability 2026, 18(2), 919; https://doi.org/10.3390/su18020919 - 16 Jan 2026
Abstract
Peatlands play a critical role in global and regional climate regulation by functioning as long-term carbon sinks, regulating hydrology, and modulating land–atmosphere energy exchange. Intact peat ecosystems store large amounts of organic carbon and stabilize local climate through high water retention and evapotranspiration, [...] Read more.
Peatlands play a critical role in global and regional climate regulation by functioning as long-term carbon sinks, regulating hydrology, and modulating land–atmosphere energy exchange. Intact peat ecosystems store large amounts of organic carbon and stabilize local climate through high water retention and evapotranspiration, whereas peatland degradation disrupts these functions and can transform peatlands into significant sources of greenhouse gas emissions and climate extremes such as drought and fire. Indonesia contains approximately 13.6–40.5 Gt of carbon, around 40% of which is stored on the island of Sumatra. However, tropical peatlands in this region are highly vulnerable to climate anomalies and land-use change. This study investigates the impacts of major climate anomalies—specifically El Niño and positive Indian Ocean Dipole (pIOD) events in 1997/1998, 2015/2016, and 2019—on peatland cover change across South Sumatra, Jambi, Riau, and the Riau Islands. Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager/Thermal Infrared Sensor imagery were analyzed using a Random Forest machine learning classification approach. Climate anomaly periods were identified using El Niño-Southern Oscillation (ENSO) and IOD indices from the National Oceanic and Atmospheric Administration. To enhance classification accuracy and detect vegetation and hydrological stress, spectral indices including the Normalized Difference Vegetation Index (NDVI), Modified Soil Adjusted Vegetation Index (MSAVI), Normalized Difference Water Index (NDWI), and Normalized Difference Drought Index (NDDI) were integrated. The results show classification accuracies of 89–92%, with kappa values of 0.85–0.90. The 2015/2016 El Niño caused the most severe peatland degradation (>51%), followed by the 1997/1998 El Niño (23–38%), while impacts from the 2019 pIOD were comparatively limited. These findings emphasize the importance of peatlands in climate regulation and highlight the need for climate-informed monitoring and management strategies to mitigate peatland degradation and associated climate risks. Full article
(This article belongs to the Special Issue Sustainable Development and Land Use Change in Tropical Ecosystems)
Show Figures

Figure 1

26 pages, 8634 KB  
Article
Using Satellite-Based Evapotranspiration (ESTIMET) in SWAT to Quantify Sediment Yield in Scarce Data in a Desertified Watershed
by Raul Gomes da Silva, Aline Maria Soares das Chagas, Monaliza Araújo de Santana, Cinthia Maria de Abreu Claudino, Victor Hugo Rabelo Coelho, Thayná Alice Brito Almeida, Abelardo Antônio de Assunção Montenegro, Yuri Jacques Agra Bezerra da Silva and Carolyne Wanessa Lins de Andrade Farias
Sustainability 2026, 18(2), 917; https://doi.org/10.3390/su18020917 - 16 Jan 2026
Abstract
The ESTIMET (Enhanced and Spatial-Temporal Improvement of MODIS EvapoTranspiration algorithm) model provides continuous, spatially distributed daily ET, essential for model calibration in data-scarce environments where conventional hydrological monitoring is unavailable. The challenge of applying SWAT in arid regions without ground observations, this study [...] Read more.
The ESTIMET (Enhanced and Spatial-Temporal Improvement of MODIS EvapoTranspiration algorithm) model provides continuous, spatially distributed daily ET, essential for model calibration in data-scarce environments where conventional hydrological monitoring is unavailable. The challenge of applying SWAT in arid regions without ground observations, this study proposes a remote-sensing-based calibration approach using ESTIMET to overcome data scarcity. Daily satellite-derived evapotranspiration (ET) data to assess the performance of the Soil and Water Assessment Tool (SWAT) was used to evaluate the performance of the SWAT in a desertified watershed in Brazil, aiming to assess ESTIMET’s effectiveness in supporting SWAT calibration, quantify sediment yield, and examine the influence of land-use changes on environmental quality over 21-years period. The results highlight a distinct hydrological response in SWAT initially underestimated ET, contrasting with patterns typically observed in other semi-arid applications and demonstrating that desertified environments require distinct calibration strategies. Performance indicators showed strong agreement between observed and simulated ET (R2 = 0.94; NSE = 0.76), supporting satellite-based ET as a valuable source for improving SWAT performance in watersheds where empirical hydrometeorological data are sparse or unevenly distributed. Sediment yield was generally low to moderate, with degradation concentrated in bare-soil areas associated with deforestation. Full article
(This article belongs to the Special Issue Watershed Hydrology and Sustainable Water Environments)
Show Figures

Figure 1

28 pages, 2385 KB  
Viewpoint
Conscious Food Systems: Supporting Farmers’ Well-Being and Psychological Resilience
by Julia Wright, Janus Bojesen Jensen, Charlotte Dufour, Noemi Altobelli, Dan McTiernan, Hannah Gosnell, Susan L. Prescott and Thomas Legrand
Challenges 2026, 17(1), 3; https://doi.org/10.3390/challe17010003 - 15 Jan 2026
Abstract
Amid escalating ecological degradation, social fragmentation, and rising mental health challenges—especially in rural and agricultural communities—there is an urgent need to reimagine systems that support both planetary and human flourishing. This viewpoint examines an emerging paradigm in agriculture that emphasizes the role of [...] Read more.
Amid escalating ecological degradation, social fragmentation, and rising mental health challenges—especially in rural and agricultural communities—there is an urgent need to reimagine systems that support both planetary and human flourishing. This viewpoint examines an emerging paradigm in agriculture that emphasizes the role of farmers’ inner development in fostering practices that enhance ecological health, community well-being, and a resilient food system. A key goal is to draw more academic attention to growing community calls for more holistic, relational, and spiritually grounded approaches to food systems as an important focus for ongoing research. Drawing on diverse case studies from Japan, India, and Europe, we examine how small-scale and natural farming initiatives are integrating inner development, universal human values, and ecological consciousness. These case studies were developed and/or refined through a program led by the Conscious Food Systems Alliance (CoFSA), an initiative of the United Nations Development Programme (UNDP) that seeks to integrate inner transformation with sustainable food systems change. The initiatives are intended as illustrative examples of how agriculture can transcend its conventional, anthropocentric role as a food production system to become a site for cultivating deeper self-awareness, spiritual connection, and regenerative relationships with nature. Participants in these cases reported significant shifts in mindset—from materialistic and extractive worldviews to more relational and value-driven orientations rooted in care, cooperation, and sustainability. Core practices such as mindfulness, experiential learning, and spiritual ecology helped reframe farming as a holistic process that nurtures both land and life. These exploratory case studies suggest that when farmers are supported in aligning with inner values and natural systems, they become empowered as agents of systemic change. By linking personal growth with planetary stewardship, these models offer pathways toward more integrated, life-affirming approaches to agriculture and future academic research. Full article
Show Figures

Figure 1

29 pages, 1608 KB  
Article
Geospatial Assessment of Agricultural Sustainability Using Multi-Criteria Analysis: A Case Study of the Grocka Municipality, Serbia
by Ljiljana Mihajlović, Dragan Petrović, Danijela Vukoičić, Miroljub Milinčić and Nikola Milentijević
World 2026, 7(1), 10; https://doi.org/10.3390/world7010010 - 14 Jan 2026
Viewed by 168
Abstract
Agricultural land represents a fundamental production resource and one of the key factors of ecological and economic stability in rural and peri-urban areas. In the municipality of Grocka, the impacts of urbanization, demographic decline, and changes in the agrarian production structure have led [...] Read more.
Agricultural land represents a fundamental production resource and one of the key factors of ecological and economic stability in rural and peri-urban areas. In the municipality of Grocka, the impacts of urbanization, demographic decline, and changes in the agrarian production structure have led to spatial degradation and reduced economic sustainability. To assess the current state and potential of agriculture at the settlement level, a multi-criteria analysis (MCA) integrated with Geographic Information Systems (GIS) was applied. The analysis encompassed demographic, production, environmental, and spatial indicators, normalized using the min–max scaling method and aggregated through a weighted sum. Criteria weights were defined based on a combination of literature review and expert judgment. The results reveal spatial variations in the level of sustainability and enable the identification of priority zones for agro-economic improvement, areas of moderate stability, and spaces suitable for developing sustainable agricultural models. Sensitivity testing (±20% variation in weights) confirmed the robustness of the results. The identified zones and proposed measures aim to revitalize degraded areas, preserve permanent crops, and strengthen production and institutional capacities. The applied methodological framework can serve as a tool for planning and policymaking in sustainable agricultural development, particularly in peri-urban contexts. Full article
Show Figures

Figure 1

21 pages, 2300 KB  
Article
Integration of Landscape Ecological Risk Assessment and Circuit Theory for Ecological Security Pattern Construction in the Pinglu Canal Economic Belt
by Jiayang Lai, Baoqing Hu and Qiuyi Huang
Land 2026, 15(1), 162; https://doi.org/10.3390/land15010162 - 14 Jan 2026
Viewed by 27
Abstract
Against the backdrop of rapid urbanization and land development, the degradation of regional ecosystem services and the intensification of ecological risks have become prominent challenges. This study takes the Pinglu Canal Economic Belt—a region characterized by the triple pressures of “large-scale engineering disturbance, [...] Read more.
Against the backdrop of rapid urbanization and land development, the degradation of regional ecosystem services and the intensification of ecological risks have become prominent challenges. This study takes the Pinglu Canal Economic Belt—a region characterized by the triple pressures of “large-scale engineering disturbance, karst ecological vulnerability, and port economic agglomeration”—as a case study. Based on remote sensing image data from 2000 to 2020, a landscape ecological risk index was constructed, and regional landscape ecological risk levels were assessed using ArcGIS spatial analysis tools. On this basis, ecological sources were identified by combining the InVEST model with morphological spatial pattern analysis (MSPA),and an ecological resistance surface was constructed by integrating factors such as land use type, elevation, slope, distance to roads, distance to water bodies, and NDVI. Furthermore, the circuit theory method was applied to identify ecological corridors, ecological pinch points, and barrier points, ultimately constructing the ecological security pattern of the Pinglu Canal Economic Belt. The main findings are as follows: (1) Ecological risks were primarily at low to medium levels, with high-risk areas concentrated in the southern coastal region. Over the past two decades, an overall optimization trend was observed, shifting from high risk to lower risk levels. (2) A total of 15 ecological sources (total area 1313.71 km2), 31 ecological corridors (total length 1632.42 km), 39 ecological pinch points, and 15 ecological barrier points were identified, clarifying the key spatial components of the ecological network. (3) Based on spatial analysis results, a zoning governance plan encompassing “ecological protected areas, improvement areas, restoration areas, and critical areas” along with targeted strategies was proposed, providing a scientific basis for ecological risk management and pattern optimization in the Pinglu Canal Economic Belt. Full article
(This article belongs to the Section Landscape Ecology)
Show Figures

Figure 1

23 pages, 5666 KB  
Article
Ecosystem Service-Based Eco-Efficiency of Cultivated Land Use in Plateau Lake Regions: Spatial Dynamics and Nonlinear Drivers
by Ruijia Wang, Qiuchen Hong, Zonghan Zhang, Shuyu Zhou, Jinmin Hao and Dong Ai
Agriculture 2026, 16(2), 203; https://doi.org/10.3390/agriculture16020203 - 13 Jan 2026
Viewed by 71
Abstract
Plateau lake regions face escalating conflicts between food production and ecosystem conservation under rapid urbanization and strict ecological regulation. However, existing evaluations often overlook the positive ecosystem services generated by cultivated land and fail to capture the nonlinear mechanisms shaping eco-efficiency of cultivated [...] Read more.
Plateau lake regions face escalating conflicts between food production and ecosystem conservation under rapid urbanization and strict ecological regulation. However, existing evaluations often overlook the positive ecosystem services generated by cultivated land and fail to capture the nonlinear mechanisms shaping eco-efficiency of cultivated land use (ECLU). This study develops an ecosystem service-based framework to assess the ECLU of Kunming, a typical plateau lake-basin city in southwest China, from 2005 to 2022. Ecosystem service value (ESV) is incorporated as a desirable output within a super-efficiency SBM model, and an XGBoost–SHAP approach is applied to identify the intensity, nonlinear thresholds and interaction mechanisms. Results show an average ECLU of 1.12 with a fluctuating downward trend and widening spatial disparities. High-efficiency zones cluster in central–southern regions, while urbanizing cores experience ecological function degradation despite productivity gains. Cultivated land fragmentation is the dominant barrier, with a critical threshold of 31.90 mu, and fertilizer intensity turns detrimental beyond 0.19 t/ha. Urbanization exhibits an inverted-U pattern—initially suppressive (<35%), promotional (35–55%), and suppressive again (>55%)—with the promotion phase weakened by approximately 67% under severe fragmentation. Globally, threshold-based zoning and fragmentation mitigation must precede fertilizer optimization to ensure synergistic benefits. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Graphical abstract

23 pages, 6278 KB  
Article
Scenario-Based Land-Use Trajectories and Habitat Quality in the Yarkant River Basin: A Coupled PLUS–InVEST Assessment
by Min Tian, Yingjie Ma, Qiang Ni, Amannisa Kuerban and Pengrui Ai
Sustainability 2026, 18(2), 796; https://doi.org/10.3390/su18020796 - 13 Jan 2026
Viewed by 87
Abstract
Land use/cover change (LUCC) is a dominant driver of ecosystem service dynamics in arid inland basins. Focusing on the Yarkant River Basin (YRB), Xinjiang, we coupled the PLUS land-use simulation with the InVEST Habitat Quality Model to project 2040 land-use patterns under four [...] Read more.
Land use/cover change (LUCC) is a dominant driver of ecosystem service dynamics in arid inland basins. Focusing on the Yarkant River Basin (YRB), Xinjiang, we coupled the PLUS land-use simulation with the InVEST Habitat Quality Model to project 2040 land-use patterns under four policy scenarios—Natural Development (ND), Arable Protection (AP), Ecological Protection (EP), and Economic Development (ED)—and to quantify their impact on habitat quality. Model validation against the 2020 map indicated strong agreement (Kappa = 0.792; FOM = 0.342), supporting scenario inference. From 1990 to 2023, arable land expanded by 58.17% and construction land by 121.64%, while forest land declined by 37.45%; these shifts corresponded to a basin-wide decline and increasing spatial heterogeneity of habitat quality. Scenario comparisons showed the EP pathway performed best, with 32.11% of the basin classified as very high-quality habitat and only 8.36% as very low-quality. In contrast, under ED, the combined share of very low + low quality reached 11.17%, alongside greater fragmentation. Spatially, high-quality habitat concentrates in forest and grassland zones of the middle–upper basin, whereas low-quality areas cluster along the oasis–desert transition and urban peripheries. Expansion of arable and construction land emerges as the primary driver of degradation. These results underscore the need to prioritize ecological-protection strategies especially improving habitat quality in oasis regions and strengthening landscape connectivity to support spatial planning and ecological security in dryland inland river basins. Full article
Show Figures

Figure 1

66 pages, 1559 KB  
Systematic Review
A Systematic Review of Land- and Water-Management Technologies for Resilient Agriculture in the Sahel: Insights from Climate Analogues in Sub-Saharan Africa
by Wilson Nguru, Issa Ouedraogo, Cyrus Muriithi, Stanley Karanja, Michael Kinyua and Alex Nduah
Sustainability 2026, 18(2), 787; https://doi.org/10.3390/su18020787 - 13 Jan 2026
Viewed by 110
Abstract
In sub-Saharan Africa, land degradation and climate change continue to undermine agricultural productivity by reducing soil productivity and water availability. This review identifies soil and water conservation technologies successfully applied in climatically analogous regions of sub-Saharan Africa with the aim of informing effective [...] Read more.
In sub-Saharan Africa, land degradation and climate change continue to undermine agricultural productivity by reducing soil productivity and water availability. This review identifies soil and water conservation technologies successfully applied in climatically analogous regions of sub-Saharan Africa with the aim of informing effective technology transfer to Senegal, particularly Sédhiou and Tambacounda. Using K-means clustering on WorldClim bioclimatic variables, 35 comparable countries were identified, of which 17 met inclusion criteria based on data availability and ≥60% climatic similarity. Eighty-five technologies were documented and assessed for their compatibility across rainfall patterns, land gradients, and uses, with 12 emerging as consistently effective. Quantitative evidence shows that zai/tassa pits, stone bunds, and half-moons increase crop yields by 50–200%, while stone bunds and mulching reduce runoff by up to 80% and improve soil moisture retention. Terracing and tied-ridging were also linked to higher water-use efficiency, with tied-ridging increasing soil moisture by 13%. Burkina Faso, Kenya, and Malawi lead in adoption and diversity, whereas Senegal lags due to institutional gaps, limited funding, and weak extension systems. These technologies offer a readily available, evidence-based toolkit for building agricultural resilience in Senegal. However, their successful adoption requires stronger policy integration, stakeholder empowerment, cross-border learning, and private-sector engagement. Full article
Show Figures

Figure 1

27 pages, 9008 KB  
Article
Assessing Ecosystem Health in Qinling Region: A Spatiotemporal Analysis Using an Improved Pressure–State–Response Framework and Monte Carlo Simulations
by Hanwen Tian, Yiping Chen, Yan Zhao, Jiahong Guo and Yao Jiang
Sustainability 2026, 18(2), 760; https://doi.org/10.3390/su18020760 - 12 Jan 2026
Viewed by 109
Abstract
Ecosystem health assessment is essential for informing ecological protection and sustainable management, yet current evaluation frameworks often overlook the foundational role of natural background conditions and struggle with methodological uncertainties in indicator weighting, particularly in ecologically fragile regions. To address these dual challenges, [...] Read more.
Ecosystem health assessment is essential for informing ecological protection and sustainable management, yet current evaluation frameworks often overlook the foundational role of natural background conditions and struggle with methodological uncertainties in indicator weighting, particularly in ecologically fragile regions. To address these dual challenges, this study proposes a novel Base–Pressure–State–Response (BPSR) framework that systematically integrates key natural background factors as a fundamental “Base” layer. Focusing on the Qinling Mountains—a critical ecological barrier in China—we implemented this framework at the county scale using multi-source data (2000–2023) and introduced a Monte Carlo simulation with triangular probability distributions to quantify and synthesize weight uncertainties from multiple methods, thereby enhancing assessment robustness. Furthermore, the Geodetector method was employed to quantitatively identify the driving forces behind the spatiotemporal heterogeneity of ecosystem health. Supported by 3S technology, our analysis demonstrates a sustained improvement in ecosystem health: the composite index rose from 0.723 to 0.916, healthy areas expanded from 60.17% to 68.48%, and nearly half of the region achieved a higher health grade. Spatially, a persistent “low–south, high–north” pattern was observed, shaped by human disturbance gradients, while temporally, the region evolved from localized improvement (2000–2010) to broad-scale recovery (2010–2023), despite lingering degradation in human-dominated zones. Driving force analysis revealed a shift from early dominance by natural and land use factors to a later complex interplay where urbanization pressure and climatic conditions jointly shaped the health pattern. The BPSR framework, combined with probabilistic weight optimization and driving force quantification, offers a methodologically robust and spatially explicit tool that advances ecosystem health evaluation and supports targeted ecological governance, policy formulation, and sustainable management in fragile mountain ecosystems, with transferable insights for similar regions globally. Full article
Show Figures

Figure 1

26 pages, 32788 KB  
Article
AI-Supported Detection of Vegetation Degradation and Urban Expansion Using Sentinel-2 Multispectral Data: Case Study
by Mihai Valentin Herbei, Ana Cornelia Badea, Sorin Mihai Radu, Csaba Lorinț, Roxana Claudia Herbei, Radu Bertici, Lucian Octavian Dragomir, George Popescu, Adrian Smuleac and Florin Sala
Land 2026, 15(1), 140; https://doi.org/10.3390/land15010140 - 10 Jan 2026
Viewed by 171
Abstract
Peri-urban areas in Eastern Europe are undergoing rapid land transformation driven by suburban housing expansion and infrastructure development, yet the processes through which vegetation is progressively degraded and built-up areas intensify remain insufficiently documented. This study analyses vegetation loss and urban expansion in [...] Read more.
Peri-urban areas in Eastern Europe are undergoing rapid land transformation driven by suburban housing expansion and infrastructure development, yet the processes through which vegetation is progressively degraded and built-up areas intensify remain insufficiently documented. This study analyses vegetation loss and urban expansion in the peri-urban belt of Timișoara, Western Romania, between 2020 and 2025 using Sentinel-2 multispectral imagery, two key spectral indices (NDVI and NDBI), and a Random Forest (RF) classifier. The results reveal a gradual, multi-stage transformation trajectory, where dense vegetation transitions first into sparse vegetation and bare soil before consolidating into built-up surfaces, rather than being replaced abruptly. Substantial vegetation decline is accompanied by notable increases in built-up land, with strong spatial differences between communes depending on development pressure. The integration of RF classification with spectral index analysis allows these transitions to be validated and interpreted more reliably, helping distinguish structural suburbanisation from short-term spectral variability. Overall, the study demonstrates the value of combining NDVI, NDBI and AI-supported land-cover classification to capture nuanced peri-urban transformation dynamics and provides actionable insights for spatial planning and sustainable land management in rapidly growing metropolitan regions. Full article
(This article belongs to the Special Issue AI’s Role in Land Use Management)
Show Figures

Figure 1

18 pages, 4942 KB  
Article
Driving Mechanisms of Spatio-Temporal Vegetation Dynamics in a Typical Agro-Pastoral Transitional Zone in Fengning County, North China
by Shiliang Liu, Bingkun Zang, Yu Lin, Yufeng Liu, Boyuan Ban and Junjie Guo
Land 2026, 15(1), 139; https://doi.org/10.3390/land15010139 - 9 Jan 2026
Viewed by 136
Abstract
Investigating vegetation dynamics and their drivers in ecologically vulnerable regions is essential for evaluating ecological restoration outcomes. This study examined the spatiotemporal evolution of the Normalized Difference Vegetation Index (NDVI) and its influencing factors in Fengning county, the Bashang region from 2001 to [...] Read more.
Investigating vegetation dynamics and their drivers in ecologically vulnerable regions is essential for evaluating ecological restoration outcomes. This study examined the spatiotemporal evolution of the Normalized Difference Vegetation Index (NDVI) and its influencing factors in Fengning county, the Bashang region from 2001 to 2023 using land use transition matrix, trend analysis, and geographical detector methods. Key findings include the following: (1) Land use transition exhibited a clear phased pattern, shifting from cropland-to-grassland conversion (2001–2010) to grassland-to-forest conversion (2010–2023). (2) The annual mean NDVI increased significantly, showing a southeast–northwest spatial gradient consistent with landforms. The long-term trend followed a sequential “degradation–improvement–consolidation” trajectory. (3) Factor detection identified land use type as the primary driver of vegetation spatial heterogeneity (q = 0.297), highlighting the dominant influence of human activities. (4) Interaction detection demonstrated bivariate enhancement for all factor pairs, with the combination of land use type and precipitation yielding the highest explanatory power (q = 0.440). This underscores that vegetation dynamics are predominantly governed by nonlinear interactions between human-driven land use and climate. The research highlights the effectiveness of ecological restoration policies and offers valuable insights for guiding future ecosystem management in ecologically fragile areas under climate change. Full article
Show Figures

Figure 1

27 pages, 1493 KB  
Article
Effect of Organic Soil Amendments and Vineyard Topographic Position on the Chemical Composition of Syrah, Trincadeira, Alicante Bouschet, and Antão Vaz Grapes (Vitis vinifera L.) in the Alentejo Wine Region
by Matteo Pierini, Shrika G. Harjivan, Nicolò Sieli, Maria João Cabrita, Sérgio Prats, Sofia Catarino and Jorge M. Ricardo-da-Silva
Environments 2026, 13(1), 44; https://doi.org/10.3390/environments13010044 - 9 Jan 2026
Viewed by 264
Abstract
Climate change and unsustainable agricultural practices are triggering land degradation in semi-arid Mediterranean regions. Organic amendments, such as mulching materials, have shown promising potential to mitigate these impacts by improving soil chemical, physical, and biological properties, while enhancing grapevine growth and productivity. This [...] Read more.
Climate change and unsustainable agricultural practices are triggering land degradation in semi-arid Mediterranean regions. Organic amendments, such as mulching materials, have shown promising potential to mitigate these impacts by improving soil chemical, physical, and biological properties, while enhancing grapevine growth and productivity. This study evaluated the effects of wheat straw mulch (M) and wheat straw combined with biochar (MB), together with vineyard topography (bottom vs. top), on grape chemical and phenolic composition in four Vitis vinifera L. cultivars (Syrah, Trincadeira, Alicante Bouschet, and Antão Vaz) grown in the Alentejo wine region. Grapes were sampled separately at top and bottom topographic positions, and classical and phenolic parameters were analyzed. The application of M and MB significantly modified must composition, mainly through changes in nitrogen and sugar levels across topographic positions. Only MB exhibited stronger effects, enhancing must quality, while MB and M reduced bottom–top variability. Similar patterns and positional effects were observed for phenolic and color parameters. Both organic treatments lowered total monomeric anthocyanin concentrations, although positional differences with wheat straw mulch were found. The results highlight that combining soil management with topography and variety response can optimize grape phenolic composition and promote sustainable viticulture through targeted, site-specific mulching strategies. Full article
Show Figures

Figure 1

21 pages, 3181 KB  
Article
Urban Industrial Land Shrinkage in China: Formation Mechanisms, Identification, and Response Strategies
by Wenrui Liu, Bingqing Li and Hongwei Zhang
Land 2026, 15(1), 138; https://doi.org/10.3390/land15010138 - 9 Jan 2026
Viewed by 141
Abstract
In the context of urban development transforming from external expansion to internal improvement, identifying the patterns and characteristics of urban industrial land shrinkage and proposing response strategies are crucial for achieving high-quality and sustainable urban development. Unlike previous studies that focused on the [...] Read more.
In the context of urban development transforming from external expansion to internal improvement, identifying the patterns and characteristics of urban industrial land shrinkage and proposing response strategies are crucial for achieving high-quality and sustainable urban development. Unlike previous studies that focused on the expansion of industrial land based on absolute changes in land area, we propose a formation mechanism for urban industrial land shrinkage from the perspectives of both absolute and potential shrinkage. We quantitatively identified the Chinese cities that experienced shrinkage between 2006 and 2020, and developed a comprehensive indicator system to investigate the changes in the structural and functional characteristics of industrial land use during this process. The results indicated that urban industrial land shrinkage has become a widespread phenomenon nationwide. Absolute shrinkage was predominantly attributed to resource depletion and a lack of economic development, while potential shrinkage was mainly influenced by high-quality development and a lack of economic development. Cities exhibiting potential shrinkage experienced more severe structural deterioration, while cities with absolute shrinkage faced greater functional degradation. Extensive land use remains a serious challenge that must be addressed in industrial land redevelopment. Finally, we propose that more attention should be given to the utilization of stock urban industrial land, in particular in cities with relatively low administrative levels, small populations, and remote locations. Urban land redevelopment projects need to be conducted in accordance with the principle of intensive land use to promote the sustainable development of cities. Full article
(This article belongs to the Special Issue Urban–Rural Land Governance and Sustainable Development in New Era)
Show Figures

Figure 1

Back to TopTop