An Anemometer Integration in a Low-Cost Air Quality Sensor System: A Real-World Case Study †
Abstract
1. Introduction
2. Methods
2.1. The Low-Cost Sensor System for Air Quality Measurements: Airbox
2.2. In-Field Positioning of the Instrumentation
2.3. Open Data Sources for Comparative Measurement Analysis
2.4. Analysis and Comparison of Measurement Data
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Station | Line-of-Sight Distance [km] | Azimuth * [°] | Relative Geographical Location in Relation to the Airport | Type | Pollutants of Interest for This Work ** | |
|---|---|---|---|---|---|---|
| PM10 | PM2.5 | |||||
| Grottaglie | 3.3 | 38.0 | NE | Urban Background | + | - |
| Ceglie Messapica | 17.7 | 32.5 | NNE | Urban Background | + | + |
| Francavilla Fontana | 16.0 | 84.0 | E | Urban Traffic | - | - |
| Taranto–Talsano | 15.1 | 220.5 | SW | Urban Background | + | - |
| Taranto–San Vito | 17.9 | 235.5 | SW | Urban Background | + | - |
| Taranto–Alto Adige | 13.0 | 242.5 | WSW | Urban Traffic | + | + |
| Taranto–Machiavelli | 15.0 | 259.0 | W | Industrial | + | + |
| Taranto–Archimede | 14.3 | 261.0 | W | Industrial | + | + |
| Taranto–CISI | 12.4 | 273.0 | W | Industrial | + | + |
| Statte–Ponte Wind | 19.2 | 274.0 | W | Industrial | + | - |
| Statte–Sorgenti | 17.4 | 288.0 | WNW | Industrial | + | - |
| Massafra | 25.5 | 290.0 | WNW | Industrial | + | - |
| Martina Franca | 21.5 | 344.5 | NNW | Urban Traffic | + | - |
| Cisternino | 25.4 | 3.0 | N | Urban Background | + | - |
Appendix B
Appendix C
| Daily Parameter | Mean | Minimum | 1st Quartile | Median | 3rd Quartile | Maximum |
|---|---|---|---|---|---|---|
| Wind speed [m/s] | 2.6 | 0.4 | 1.3 | 2.2 | 3.4 | 8.3 |
| Sustained speed V120 [m/s] | 7.6 | 2.3 | 5.2 | 6.9 | 9.7 | 17.9 |
| Sustained speed V600 [m/s] | 6.6 | 1.6 | 4.4 | 6.2 | 8.5 | 15.5 |
| PM2.5 [µg/m3] | 8.7 | 1.4 | 4.3 | 7.0 | 11.0 | 31.7 |
| PM10 [µg/m3] | 13 | 2 | 7 | 11 | 17 | 58 |
| PM2.5 flux [µg/m2/s] | 21.5 | 1.6 | 9.8 | 16.1 | 25.4 | 263.1 |
| PM10 flux [µg/m2/s] | 34.7 | 2.7 | 14.2 | 23.4 | 38.4 | 483.1 |
References
- World Health Organization. Air Pollution Data Portal. Available online: https://www.who.int/data/gho/data/themes/air-pollution (accessed on 12 August 2025).
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; WHO: Geneva, Switzerland, 2021; Available online: https://iris.who.int/handle/10665/345329 (accessed on 12 August 2025).
- European Union. Directive (EU) 2024/2881 of the European Parliament and of the Council of 23 October 2024 on ambient air quality and cleaner air for Europe. Official Journal of the European Union, L 2024/2881, 2024. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L_202402881 (accessed on 12 August 2025).
- World Meteorological Organization (WMO). Integrating Low-Cost Sensor Systems and Networks to Enhance Air Quality Applications; GAW Report No. 293; WMO: Geneva, Switzerland, 2024. [Google Scholar]
- UNEP. Monitoring Air Quality. United Nations Environment Programme. Available online: https://www.unep.org/topics/air/monitoring-air-quality/monitoring-air-quality (accessed on 12 August 2025).
- Mead, M.I.; Popoola, O.A.M.; Stewart, G.B.; Landshoff, P.; Calleja, M.; Hayes, M.; Baldovi, J.J.; McLeod, M.W.; Hodgson, T.F.; Dicks, J.; et al. The Use of Electrochemical Sensors for Monitoring Urban Air Quality in Low-Cost, High-Density Networks. Atmos. Environ. 2013, 70, 186–203. [Google Scholar] [CrossRef]
- Borrego, C.; Costa, A.M.; Ginja, J.; Amorim, M.; Coutinho, M.; Karatzas, K.; Sioumis, T.; Katsifarakis, N.; Konstantinidis, K.; De Vito, S.; et al. Assessment of air quality microsensors versus reference methods: The EuNetAir joint exercise. Atmos. Environ. 2016, 147, 246–263. [Google Scholar] [CrossRef]
- Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 2017, 99, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Motlagh, N.H.; Lagerspetz, E.; Nurmi, P.; Li, X.; Varjonen, S.; Mineraud, J.; Siekkinen, M.; Rebeiro-Hargrave, A.; Hussein, T.; Petäjä, T.; et al. Toward Massive Scale Air Quality Monitoring. IEEE Commun. Mag. 2020, 58, 54–59. [Google Scholar] [CrossRef]
- United Nations. The 17 Goals|Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 12 August 2025).
- Stafoggia, M.; Michelozzi, P.; Schneider, A.; Armstrong, B.; Scortichini, M.; Rai, M.; Achilleos, S.; Alahmad, B.; Analitis, A.; Åström, C.; et al. Joint effect of heat and air pollution on mortality in 620 cities of 36 countries. Environ. Int. 2023, 181, 108258. [Google Scholar] [CrossRef] [PubMed]
- Penza, M.; Suriano, D.; Pfister, V.; Prato, M.; Cassano, G. Urban air quality monitoring with networked low-cost sensor-systems. Proceedings 2017, 1, 573. [Google Scholar] [CrossRef]
- Penza, M.; Suriano, D.; Pfister, V.; Prato, M.; Cassano, G. Wireless Sensors Network Monitoring of Saharan Dust Events in Bari, Italy. Proceedings 2018, 2, 898. [Google Scholar] [CrossRef]
- Penza, M.; Pfister, V.; Suriano, D.; Dipinto, S.; Prato, M.; Cassano, G. Application of Low-Cost Sensors in Stationary and Mobile Nodes for Urban Air Quality Index Monitoring. Eng. Proc. 2023, 48, 62. [Google Scholar] [CrossRef]
- Open-Meteo. Free Open-Source Weather API. Available online: https://open-meteo.com/ (accessed on 12 August 2025).
- Zippenfenig, P. Open-Meteo.com Weather API, version 1.4.0; Zenodo, 2023. Available online: https://zenodo.org/records/14582479 (accessed on 12 August 2025).
- Muñoz, S. ERA5-Land Hourly Data from 2001 to Present; Copernicus Climate Change Service (C3S) Climate Data Store (CDS); European Centre for Medium-Range Weather Forecasts (ECMWF): Reading, UK, 2019. [Google Scholar] [CrossRef]
- Schimanke, S.; Ridal, M.; Le Moigne, P.; Berggren, L.; Undén, P.; Randriamampianina, R.; Andrea, U.; Bazile, E.; Bertelsen, A.; Brousseau, P.; et al. CERRA Sub-Daily Regional Reanalysis Data for Europe on Single Levels from 1984 to Present; Copernicus Climate Change Service (C3S) Climate Data Store (CDS); European Centre for Medium-Range Weather Forecasts (ECMWF): Reading, UK, 2021. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1940 to Present; Copernicus Climate Change Service (C3S) Climate Data Store (CDS); European Centre for Medium-Range Weather Forecasts (ECMWF): Reading, UK, 2023. [Google Scholar] [CrossRef]
- ARPA Puglia, Regional Environmental Protection Agency of Apulia. Available online: https://www.arpa.puglia.it/ (accessed on 12 August 2025). (In Italian).
- World Meteorological Organization (WMO). Guide to Instruments and Methods of Observation. Volume I—Measurement of Meteorological Variables, 2024 Edition; WMO-No. 8; WMO: Geneva, Switzerland, 2024. [Google Scholar]
- World Meteorological Organization (WMO). Technical Regulations, Volume II—Meteorological Service for International Air Navigation, 2018 Edition; WMO-No. 49; Basic Documents No. 2; Updated in 2021; WMO: Geneva, Switzerland, 2021. [Google Scholar]
- Mori, Y. Methods for Estimating the Mean and the Standard Deviation of Wind Direction. J. Appl. Meteorol. Climatol. 1987, 26, 1282–1284. [Google Scholar] [CrossRef]
- Pfister, V.; Prato, M.; Penza, M. Field Performance Evaluation of Air Quality Low-Cost Sensors Deployed in a Near-City Space-Airport. Eng. Proc. 2023, 48, 27. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. EPA-454/B-24-002—Technical Assistance Document for the Reporting of Daily Air Quality—The Air Quality Index (AQI); United States EPA-Environmental Protection Agency Office of Air Quality Planning and Standards: Durham, NC, USA, 2024.







| Airbox | |
| Control unit | Raspberry Pi 2 (CPU: Quad-core ARM Cortex-A7 @ 900 MHz, RAM: 1 GB LPDDR2) |
| Connectivity options | 4G cellular networks (Ethernet and Wi-Fi are also available) |
| Supported storage type | MicroSD 32 GB |
| Operating system | Debian Linux 11 “Bullseye” |
| Software programming language | Python 3.10 |
| Power consumption | 15 W (3 A @ 5 V) |
| Computational power | 129 ÷ 1500 MFLOPS (varies depending on benchmark and workload) |
| Enclosure dimensions | 30 cm (height) × 22 cm (width) × 13 cm (depth) |
| Enclosure weight | Approx. 1.2 kg (excluding sensors) |
| Anemometer Integrated into the Airbox | |
| Model and Manufacturer | DW-6410, Davis Instruments |
| Wind direction resolution | 1° |
| Wind direction accuracy | ±3° |
| Wind speed resolution | 1 mph (rounded to nearest 0.1 m/s) |
| Wind speed range | 0.5 to 89 m/s |
| Wind speed accuracy | ±1 m/s or ±5%, whichever is greater |
| Anemometer weight | Approx. 1.3 kg |
| Particulate Matter Sensor Integrated into the Airbox | |
| Model and Manufacturer | NextPM, TERA Sensor |
| Targeted pollutants | PM1, PM2.5 and PM10 |
| Particle size detection range | 0.3 ÷ 10 μm diameter |
| Concentration detection range | 0 ÷ 1000 μg/m3 (Arizona dust A1 equivalent) |
| Sensor weight | 45 g |
| Wind Speed, Daily Parameter | Metrics | |||
|---|---|---|---|---|
| Mean | 3.5 m/s | 4.0 m/s | 0.674 | 0.454 |
| , Maximum | 2.6 m/s | 3.2 m/s | 0.627 | 0.393 |
| , Maximum | 3.1 m/s | 4.0 m/s | 0.602 | 0.362 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pfister, V.; Prato, M.; Penza, M. An Anemometer Integration in a Low-Cost Air Quality Sensor System: A Real-World Case Study. Eng. Proc. 2025, 118, 89. https://doi.org/10.3390/ECSA-12-26552
Pfister V, Prato M, Penza M. An Anemometer Integration in a Low-Cost Air Quality Sensor System: A Real-World Case Study. Engineering Proceedings. 2025; 118(1):89. https://doi.org/10.3390/ECSA-12-26552
Chicago/Turabian StylePfister, Valerio, Mario Prato, and Michele Penza. 2025. "An Anemometer Integration in a Low-Cost Air Quality Sensor System: A Real-World Case Study" Engineering Proceedings 118, no. 1: 89. https://doi.org/10.3390/ECSA-12-26552
APA StylePfister, V., Prato, M., & Penza, M. (2025). An Anemometer Integration in a Low-Cost Air Quality Sensor System: A Real-World Case Study. Engineering Proceedings, 118(1), 89. https://doi.org/10.3390/ECSA-12-26552

