Divers Transformations Leading to New Potent GPx Mimetics †
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Benzisoselenazol-3-(2H)-Thiones
2.2. Synthesis of N-terpenyl Benzisoselenazol-3(2H)-Ones
2.3. Synthesis of Seleninic Acid Potassium Salts
2.4. Synthesis of N-substituted Unsymmetrical Phenylselenides
2.5. Evaluation of the Antioxidant Activity
2.6. Evaluation of the Cytotoxic Activity
3. Conclusions
References
- Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015, 4, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Davies, K.J. Protein damage and degradation by oxygen radicals. I. general aspects. J. Biol. Chem. 1987, 262, 9895–9901. [Google Scholar] [CrossRef]
- Terman, A.; Brunk, U.T. Oxidative Stress, Accumulation of Biological ‘Garbage’, and Aging. Antioxid. Redox Signal. 2006, 8, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Dalle-Donne, I.; Aldini, G.; Carini, M.; Colombo, R.; Rossi, R.; Milzani, A.J. The effect of mesedin on the content of oxidative stress biomarkers in the brain tissue in ischemia. Cell Mol. Med. 2006, 10, 389–406. [Google Scholar] [CrossRef] [PubMed]
- Finkel, T.; Holbrook, N. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Oxidative stress: Introductory remarks. In Oxidative Stress; Sies, H., Ed.; Academic Press: London, UK, 1985; pp. 1–8. [Google Scholar]
- Obieziurska, M.; Pacuła, A.J.; Juhas, U.; Antosiewicz, J.; Ścianowski, J. The Influence of O/S exchange on the Biocatalytical activity of benzisoselenazol-3(2H)-ones. Catalysts 2018, 8, 493–507. [Google Scholar] [CrossRef]
- Pacuła, A.J.; Ścianowski, J.; Aleksandrzak, K.B. Highly efficient synthesis and antioxidant capacity of N-substituted benzisoselenazol-3(2H)-ones. RSC Adv. 2014, 4, 48959–48962. [Google Scholar] [CrossRef]
- Scheibye, S.; Kristensen, J.; Lawesson, S.O. Studies on organophosphorus compounds—XXVII1: Synthesis of thiono-, thiolo- and dithiolactones. Tetrahedron 1979, 35, 1339–1343. [Google Scholar] [CrossRef]
- Obieziurska, M.; Pacuła, A.J.; Długosz-Pokorska, A.; Krzemiński, M.; Janecka, A.; Ścianowski, J. Bioselectivity induced by chirality of new terpenyl organoselenium compounds. Materials 2019, 12, 3579–3591. [Google Scholar] [CrossRef] [PubMed]
- Obieziurska, M.; Pacuła, A.J.; Laskowska, A.; Długosz-Pokorska, A.; Janecka, A.; Ścianowski, J. Seleninic acid potassium salts as water-soluble biocatalysts with enhanced bioavailability. Materials 2020, 3, 661. [Google Scholar] [CrossRef] [PubMed]
- Polêto, M.D.; Rusu, V.H.; Grisci, B.I.; Dorn, M.; Lins, R.D.; Verli, H. Aromatic rings commonly used in medicinal chemistry: Force fields comparison and interactions with water toward the design of new chemical entities. Front. Pharmacol. 2018, 9, 395–414. [Google Scholar] [CrossRef] [PubMed]
- Ward, S.E.; Beswick, P. What does the aromatic ring number mean for drug design? Expert Opin. Drug Discov. 2014, 9, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Obieziurska-Fabisiak, M.; Pacuła, A.J.; Capoccia, L.; Drogosz-Stachowicz, J.; Janecka, A.; Santi, C.; Ścianowski, J. Phenylselanyl group incorporation for “glutathione peroxidase-lLike” activity modulation. Molecules 2020, 25, 3354. [Google Scholar] [CrossRef] [PubMed]
- Kumakura, F.; Mishra, B.; Priyadarsini, K.I.; Iwaoka, M. A water-soluble cyclic selenide with enhanced glutathione peroxidase-like catalytic activities. J. Org. Chem. 2010, 3, 440–444. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
Remaining Dithiotreitol (%) | |||||
---|---|---|---|---|---|
Catalyst [0.1 equiv.] | 3 min | 5 min | 15 min | 30 min | 60 min |
Benzisoselenazolthiones | |||||
3b | 43 | 21 | 3 | 2 | 0 |
3e | 40 | 26 | 18 | 17 | 15 |
N-terpenyl benzisoselenazol-3(2H)-ones | |||||
10/11 | 71 | 39 | 5 | 0 | 0 |
12 | 74 | 61 | 28 | 6 | 0 |
Benzeneseleninic acids | |||||
16e | 76 | 56 | 38 | 24 | 12 |
16f | 85 | 64 | 37 | 18 | 2 |
Seleninic acid potassium salts | |||||
17a–f | 0 | 0 | 0 | 0 | 0 |
Phenylselenides | |||||
21a | 57 | 39 | 16 | 4 | 0 |
22a | 98 | 97 | 94 | 88 | 71 |
Ebselen | 84 | 75 | 64 | 58 | 52 |
Remaining Dithiotreitol (%) | |||||
---|---|---|---|---|---|
Catalyst [0.01 equiv.] | 3 min | 5 min | 15 min | 30 min | 60 min |
Seleninic acid potassium salts | |||||
17a | 24 | 11 | 0 | 0 | 0 |
17e | 59 | 16 | 0 | 0 | 0 |
Ebselen | 97 | 96 | 95 | 94 | 92 |
MCF-7 | HL-60 | MCF-7 | HL-60 | ||
---|---|---|---|---|---|
IC50, µM | IC50, µM | ||||
N-terpenyl benzisoselenazol-3(2H)-ones | Seleninic acid potassium salts | ||||
10 | 19.9 ± 0.4 | 7.1 ± 0.4 | 17f | 16.6 ± 1.1 | 42.1 ± 3.1 |
11 | 13.3 ± 1.1 | 20.6 ± 1.0 | Phenylselenides | ||
7 | 12.4 ± 0.4 | 12.4 ± 0.9 | 31b | 16.35 ± 0.29 | 16.3 ± 0.16 |
8 | 85.5 ± 4.0 | 61.3 ± 3.2 | Carboplatin | ||
Benzeneseleninic acids | 0.70 ± 0.30 | 3.19 ± 0.46 | |||
16a | 40.1 ± 1.2 | 11.7 ± 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ścianowski, J.; Pacuła-Miszewska, A.J.; Obieziurska-Fabisiak, M.; Laskowska, A. Divers Transformations Leading to New Potent GPx Mimetics. Chem. Proc. 2020, 2, 5. https://doi.org/10.3390/ECCS2020-07546
Ścianowski J, Pacuła-Miszewska AJ, Obieziurska-Fabisiak M, Laskowska A. Divers Transformations Leading to New Potent GPx Mimetics. Chemistry Proceedings. 2020; 2(1):5. https://doi.org/10.3390/ECCS2020-07546
Chicago/Turabian StyleŚcianowski, Jacek, Agata J. Pacuła-Miszewska, Magdalena Obieziurska-Fabisiak, and Anna Laskowska. 2020. "Divers Transformations Leading to New Potent GPx Mimetics" Chemistry Proceedings 2, no. 1: 5. https://doi.org/10.3390/ECCS2020-07546
APA StyleŚcianowski, J., Pacuła-Miszewska, A. J., Obieziurska-Fabisiak, M., & Laskowska, A. (2020). Divers Transformations Leading to New Potent GPx Mimetics. Chemistry Proceedings, 2(1), 5. https://doi.org/10.3390/ECCS2020-07546