Iodine and Bromine Analysis in Human Urine and Serum by ICP-MS, Tailored for High-Throughput Routine Analysis in Population-Based Studies
Abstract
1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.2. Chemicals and Materials
2.3. Sample Preparation by Alkaline Dilution
3. Results and Discussion
3.1. Previous Development and Optimization of the Method
3.2. Performance of Analytical Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Br | Bromine |
| Dil. | Diluent |
| DF | Dilution Factor |
| I | Iodine |
| ICP-MS | Inductively Coupled Plasma Mass Spectrometry |
| ICP-QQQ | Triple Quadrupole ICP-MS |
| iPrOH | Isopropanol |
| LOD | Limit of detection |
| LOQ | Limit of quantification |
| NR | Not reported |
| Rec. | Recovery |
| RSD | Relative Standard Deviation |
| SD | Standard Deviation |
| SV | Sample Volume |
| TMAH | Tetramethylammonium Hydroxide |
References
- Zimmermann, M.B.; Jooste, P.L.; Pandav, C.S. Iodine-deficiency disorders. Lancet 2008, 372, 1251–1262. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Wu, X.; Wu, J.; Chen, D.; Chen, Z. Serum iodine concentration and its associations with thyroid function and dietary iodine in pregnant women in the southeast coast of China: A cross-sectional study. Front. Endocrinol. 2023, 14, 1289572. [Google Scholar] [CrossRef] [PubMed]
- McCall, A.S.; Cummings, C.F.; Bhave, G.; Vanacore, R.; Page-McCaw, A.; Hudson, B.G. Bromine Is an Essential Trace Element for Assembly of Collagen IV Scaffolds in Tissue Development and Architecture. Cell 2014, 157, 1380–1392. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Song, W.; Weston, T.A.; Tran, C.; Kurtz, I.; Zuckerman, J.E.; Guagliardo, P.; Miner, J.H.; Ivanov, S.V.; Bougoure, J.; et al. Peroxidasin-mediated bromine enrichment of basement membranes. Proc. Natl. Acad. Sci. USA 2020, 117, 15827–15836. [Google Scholar] [CrossRef]
- Cruz, L.C.; Habibovic, A.; Dempsey, B.; Massafera, M.P.; Janssen-Heininger, Y.M.W.; Lin, M.J.; Hoffman, E.T.; Weiss, D.J.; Huang, S.K.; van der Vliet, A.; et al. Identification of tyrosine brominated extracellular matrix proteins in normal and fibrotic lung tissues. Redox Biol. 2024, 71, 103102. [Google Scholar] [CrossRef]
- Pavelka, S. Metabolism of bromide and its interference with the metabolism of iodine. Physiol. Res. 2004, 53, S81–S90. [Google Scholar] [CrossRef]
- Novakova, G.; Bonev, P.; Duro, M.; Azevedo, R.; Couto, C.; Pinto, E.; Almeida, A. Serum Iodine and Bromine in Chronic Hemodialysis Patients-An Observational Study in a Cohort of Portuguese Patients. Toxics 2023, 11, 247. [Google Scholar] [CrossRef]
- Thornton, C.S.; Haws, J.T. Bromism in the Modern Day: Case Report and Canadian Review of Bromide Intoxication. J. Gen. Intern. Med. 2020, 35, 2459–2461. [Google Scholar] [CrossRef]
- Pavelka, S.; Babický, A.; Lener, J.; Vobecký, M. Impact of high bromide intake in the rat dam on iodine transfer to the sucklings. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2002, 40, 1041–1045. [Google Scholar] [CrossRef]
- Novo, D.L.R.; Mello, J.E.; Rondan, F.S.; Henn, A.S.; Mello, P.A.; Mesko, M.F. Bromine and iodine determination in human saliva: Challenges in the development of an accurate method. Talanta 2019, 191, 415–421. [Google Scholar] [CrossRef]
- Li, X.; Tu, P.; Gu, S.; Mo, Z.; Wu, L.; Xing, M.; Chen, Z.; Wang, X. Serum Iodine as a Potential Individual Iodine Status Biomarker: A Cohort Study of Mild Iodine Deficient Pregnant Women in China. Nutrients 2023, 15, 3555. [Google Scholar] [CrossRef]
- König, F.; Andersson, M.; Hotz, K.; Aeberli, I.; Zimmermann, M.B. Ten Repeat Collections for Urinary Iodine from Spot Samples or 24-Hour Samples Are Needed to Reliably Estimate Individual Iodine Status in Women123. J. Nutr. 2011, 141, 2049–2054. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lin, Y.; Wu, J.; Chen, D.; Wu, X.; Lan, Y.; Chen, Z. Is the urinary iodine/creatinine ratio applicable to assess short term individual iodine status in Chinese adults? Comparison of iodine estimates from 24-h urine and timed-spot urine samples in different periods of the day. Nutr. Metab. 2022, 19, 27. [Google Scholar] [CrossRef] [PubMed]
- Hlucny, K.; Alexander, B.M.; Gerow, K.; Larson-Meyer, D.E. Reflection of Dietary Iodine in the 24 h Urinary Iodine Concentration, Serum Iodine and Thyroglobulin as Biomarkers of Iodine Status: A Pilot Study. Nutrients 2021, 13, 2520. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.M.; Wu, Y.; Long, H.H.; Chen, C.G.; Wang, C.; Ye, Y.B.; Shen, Z.Y.; Ye, M.T.; Zhang, S.J.; Li, M.M.; et al. Associations of Maternal Serum Iodine Concentration with Obstetric Complications and Birth Outcomes-Longitudinal Analysis Based on the Huizhou Mother-Infant Cohort, South China. Nutrients 2023, 15, 2868. [Google Scholar] [CrossRef]
- Błażewicz, A.; Klatka, M.; Dolliver, W.; Kocjan, R. Determination of total iodine in serum and urine samples by ion chromatography with pulsed amperometric detection—Studies on analyte loss, optimization of sample preparation procedures, and validation of analytical method. J. Chromatogr. B 2014, 962, 141–146. [Google Scholar] [CrossRef]
- Jooste, P.L.; Strydom, E. Methods for determination of iodine in urine and salt. Best Pract. Res. Clin. Endocrinol. Metab. 2010, 24, 77–88. [Google Scholar] [CrossRef]
- Li, Y.; Ding, S.; Han, C.; Liu, A.; Shan, Z.; Teng, W.; Mao, J. Concentration-dependent Differences in Urinary Iodine Measurements Between Inductively Coupled Plasma Mass Spectrometry and the Sandell-Kolthoff Method. Biol. Trace Elem. Res. 2021, 199, 2489–2495. [Google Scholar] [CrossRef]
- Mello, P.A.; Barin, J.S.; Duarte, F.A.; Bizzi, C.A.; Diehl, L.O.; Muller, E.I.; Flores, E.M.M. Analytical methods for the determination of halogens in bioanalytical sciences: A review. Anal. Bioanal. Chem. 2013, 405, 7615–7642. [Google Scholar] [CrossRef]
- Nóbrega, J.A.; Santos, M.C.; de Sousa, R.A.; Cadore, S.; Barnes, R.M.; Tatro, M. Sample preparation in alkaline media. Spectrochim. Acta Part B At. Spectrosc. 2006, 61, 465–495. [Google Scholar] [CrossRef]
- Alotaibi, F.A.; Cornett, R.J.; Herod, M.N. Rapid and efficient autoclave digestion for the extraction of iodine-129 from urine samples. J. Environ. Radioact. 2021, 228, 106528. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Hansen, V.; Aldahan, A.; Possnert, G.; Lind, O.C.; Lujaniene, G. A review on speciation of iodine-129 in the environmental and biological samples. Anal. Chim. Acta 2009, 632, 181–196. [Google Scholar] [CrossRef] [PubMed]
- Shikamori, Y.; Nakano, K.; Sugiyama, N.; Kakuta, S. The Ultratrace Determination of Iodine 129 Using the Agilent 8800 Triple Quadrupole ICP-MS in MS/MS Mode. Application Note (5991-0321EN). 2012. Available online: https://icpms.cz/labrulez-bucket-strapi-h3hsga3/5991_0321_EN_App_Note_8800_I_bf42f8e651/5991-0321EN_AppNote_8800_I.pdf (accessed on 11 November 2025).
- Hsieh, Y.-K.; Wang, T.; Jian, L.-W.; Chen, W.-H.; Tsai, T.-L.; Wang, C.-F. An improved analytical method for iodine-129 determination in low-level radioactive waste. Radiochim. Acta 2014, 102, 1137–1142. [Google Scholar] [CrossRef]
- Honda, M.; Takaku, Y.; Shikamori, Y.; Matsuzaki, H.; Sueki, K. Preparation of Iodine-129 Standard Solutions for Triple Quadrupole ICP-MS. J. Nucl. Radiochem. Sci. 2018, 18, 1–4. [Google Scholar] [CrossRef]
- Matsueda, M.; Aoki, J.; Koarai, K.; Terashima, M.; Takagai, Y. Mass-spectrometric determination of iodine-129 using O2-CO2 mixed-gas reaction in inductively coupled plasma tandem quadrupole mass spectrometry. Anal. Sci. 2022, 38, 1371–1376. [Google Scholar] [CrossRef]
- Kutscher, D.; Wills, J.; McSheehy Ducos, S. Interference Free Detection of the Radioactive Iodine Isotope 129I Using Oxygen as a Reactive Gas. 2016. Available online: https://documents.thermofisher.com/TFS-Assets/CMD/Application-Notes/AB-43260-Iodine-Isotope-129I-Oxygen-AB43260-EN-HR.pdf (accessed on 11 November 2025).
- Cook, M.K.; Dial, A.R.; Hendy, I.L. Iodine stability as a function of pH and its implications for simultaneous multi-element ICP-MS analysis of marine carbonates for paleoenvironmental reconstructions. Mar. Chem. 2022, 245, 104148. [Google Scholar] [CrossRef]
- Xu, L.; Luo, C.; Ling, H.; Tang, Y.; Wen, H. Determination of low bromine (Br) and iodine (I) in water with low- to high-salinity content using ICP-MS. Int. J. Mass Spectrom. 2018, 432, 52–58. [Google Scholar] [CrossRef]
- Lehner, A.F.; Zyskowski, J.; Johnson, M.; Buchweitz, J.P. Improved accuracy in measurement of iodine in animal feeds by ICP/MS with alkaline dissolution. Anim. Feed Sci. Technol. 2021, 272, 114781. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, D.; Yu, S.; Cheng, X.; Xia, L.; Yin, Y.; Xie, S.; Cheng, Q.; Qiu, L.; Lian, X. Rapid inductively coupled plasma mass spectrometry method to determine iodine in amniotic fluid, breast milk and cerebrospinal fluid. Clin. Biochem. 2020, 82, 99–104. [Google Scholar] [CrossRef]
- Sung, W.-H.; Tsao, Y.-T.; Shen, C.-J.; Tsai, C.-Y.; Cheng, C.-M. Small-volume detection: Platform developments for clinically-relevant applications. J. Nanobiotechnology 2021, 19, 114. [Google Scholar] [CrossRef]
- Killilea, D.W.; Schultz, K. Pre-analytical variables influence zinc measurement in blood samples. PLoS ONE 2023, 18, e0286073. [Google Scholar] [CrossRef] [PubMed]
- Heyndrickx, E.; Sioen, I.; Huybrechts, B.; Callebaut, A.; De Henauw, S.; De Saeger, S. Human biomonitoring of multiple mycotoxins in the Belgian population: Results of the BIOMYCO study. Environ. Int. 2015, 84, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, L.; Peterson, K.; Nunes, T.S.; Knap, M.; Petrick, L.; Landero-Figueroa, J.A. A miniaturized sample preparation method for routine elemental determination in whole blood using volumetric absorptive micro-sampling by ICP-QQQ. Anal. Bioanal. Chem. 2023, 416, 2711–2724. [Google Scholar] [CrossRef] [PubMed]
- Haap, M.; Roth, H.J.; Huber, T.; Dittmann, H.; Wahl, R. Urinary iodine: Comparison of a simple method for its determination in microplates with measurement by inductively-coupled plasma mass spectrometry. Sci. Rep. 2017, 7, 39835. [Google Scholar] [CrossRef]
- Oliveira, A.A.; Trevizan, L.C.; Nóbrega, J.A. REVIEW: Iodine Determination by Inductively Coupled Plasma Spectrometry. Appl. Spectrosc. Rev. 2010, 45, 447–473. [Google Scholar] [CrossRef]
- Tagami, K.; Uchida, S.; Hirai, I.; Tsukada, H.; Takeda, H. Determination of chlorine, bromine and iodine in plant samples by inductively coupled plasma-mass spectrometry after leaching with tetramethyl ammonium hydroxide under a mild temperature condition. Anal. Chim. Acta 2006, 570, 88–92. [Google Scholar] [CrossRef]
- Nelson, J.; Pacquette, L.; Dong, S.; Yamanaka, M. Simultaneous Analysis of Iodine and Bromine Species in Infant Formula using HPLC-ICP-MS. J. AOAC Int. 2019, 102, 1199–1204. [Google Scholar] [CrossRef]
- Todorov, T.I.; Gray, P.J. Analysis of iodine in food samples by inductively coupled plasma-mass spectrometry. Food Addit. Contam. Part. A Chem. Anal. Control Expo. Risk Assess. 2016, 33, 282–290. [Google Scholar] [CrossRef]
- Macours, P.; Aubry, J.C.; Hauquier, B.; Boeynaems, J.M.; Goldman, S.; Moreno-Reyes, R. Determination of urinary iodine by inductively coupled plasma mass spectrometry. J. Trace Elem. Med. Biol. 2008, 22, 162–165. [Google Scholar] [CrossRef]
- Wilschefski, S.C.; Baxter, M.R. Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects. Clin. Biochem. Rev. 2019, 40, 115–133. [Google Scholar] [CrossRef]
- Rosen, V.V.; Garber, O.G.; Chen, Y. Iodine determination in mineral water using ICP-MS: Method development and analysis of brands available in Israeli stores. J. Food Compos. Anal. 2022, 111, 104600. [Google Scholar] [CrossRef]
- Hu, Z.; Gao, S.; Günther, D.; Hu, S.; Liu, X.; Yuan, H. Direct Determination of Tellurium in Geological Samples by Inductively Coupled Plasma Mass Spectrometry Using Ethanol as a Matrix Modifier. Appl. Spectrosc. 2006, 60, 781–785. [Google Scholar] [CrossRef]
- World Health Organization. Urinary Iodine Concentrations for Determining Iodine Status in Populations; World Health Organizations: Geneva, Switzerland, 2013. [Google Scholar]
- Allain, P.; Mauras, Y.; Dougé, C.; Jaunault, L.; Delaporte, T.; Beaugrand, C. Determination of iodine and bromine in plasma and urine by inductively coupled plasma mass spectrometry. Analyst 1990, 115, 813–815. [Google Scholar] [CrossRef]
- Cuenca, R.E.; Pories, W.J.; Bray, J. Bromine levels in human serum, urine, hair. Biol. Trace Elem. Res. 1988, 16, 151–154. [Google Scholar] [CrossRef]
- Horwitz, W.; Albert, R. The Horwitz ratio (HorRat): A useful index of method performance with respect to precision. J. AOAC Int. 2006, 89, 1095–1109. [Google Scholar] [CrossRef]
- González, A.G.; Herrador, M.Á.; Asuero, A.G. Intra-laboratory assessment of method accuracy (trueness and precision) by using validation standards. Talanta 2010, 82, 1995–1998. [Google Scholar] [CrossRef]

| Parameters | Value |
|---|---|
| RF Power | 1550 W |
| Nebulizer gas | 0.90 L min−1 |
| Nebulizer pump | 0.10 rps (using 0.76 mm i.d. tubing) ≈200 µL min−1 sample uptake |
| Makeup gas | 0.37 L min−1 |
| Spray chamber | 2 °C |
| Collision/reaction cell | 4 mL min−1 (He) |
| Acquisition mode | 3 replicates, 30 sweeps/replicate |
| Q1 → Q2, dwell time | 127I → 127I (Analyte), 0.70 s |
| 89Y → 89Y (ISTD), 0.15 s | |
| 103Rh → 103Rh (ISTD), 0.15 s | |
| 121Sb → 121Sb (ISTD), 0.15 s | |
| 125Te → 125Te (ISTD), 0.15 s | |
| 193Ir → 193Ir (ISTD), 0.15 s | |
| 79Br → 79Br (Analyte), 0.15 s |
| Element | In Analytical Solution a | In Sample a,b | ||
|---|---|---|---|---|
| LOD | LOQ | LOD | LOQ | |
| Br | 0.04 | 0.13 | 0.78 | 2.6 |
| I | 0.01 | 0.04 | 0.24 | 0.79 |
| Sample | Result (µg L−1) | Rec. (%) | Acceptance Requirements | |
|---|---|---|---|---|
| Mean ± SD (RSD, %) | Reference Values | RSD (%) a | ||
| URINE | ||||
| NIST 2670a | 1727 ± 35 (2.1) | - | - | 10 |
| Urine L-2 (SeronormTM) | 1096 ± 26 (2.4) | 86.7 | 1264 c | 10 |
| QM-U-Q2324 | 3193 ± 107 (3.3) | - | - | 9 |
| QM-U-Q2404 | 1201 ± 13 (1.1) | - | - | 10 |
| QM-U-Q2406 | 1231 ± 28 (2.3) | - | - | 10 |
| QM-U-Q2405 | 1780 ± 50 (2.8) | - | - | 10 |
| QM-U-Q2405 (50% LM) b | 1690 ± 72 (4.3) | - | - | 10 |
| QM-U-Q2405 (50% MM) b | 1834 ± 69 (3.8) | - | - | 10 |
| Spike Test (in QM-U-Q2405) d | 1016 ± 40 (4.0) | 101.6 | 1000 | 11 |
| SERUM | ||||
| Serum L-2 (SeronormTM) | 548 ± 27 (5.0) | 79.6 | 689 c | 12 |
| QM-S-Q2307 | 2258 ± 30 (1.3) | - | - | 9 |
| QM-S-Q2308 | 2623 ± 47 (1.8) | - | - | 9 |
| QM-S-Q2407 | 3111 ± 43 (1.4) | - | - | 9 |
| QM-S-Q2408 | 2729 ± 36 (1.3) | - | - | 9 |
| QM-S-Q2308 (50% LM) b | 2655 ± 87 (3.3) | - | - | 9 |
| QM-S-Q2308 (50% MM) b | 2607 ± 50 (1.9) | - | - | 9 |
| Spike Test (in QM-S-Q2407) d | 988 ± 57 (5.7) | 98.8 | 1000 | 11 |
| Sample | Result (µg L−1) | Rec. (%) | Acceptance Requirements | |
|---|---|---|---|---|
| Mean ± SD (RSD, %) | Reference Values | RSD (%) a | ||
| URINE | ||||
| NIST 2670a | 87.8 ± 1.7 (1.9) | 99.5 | 88.2 (87.1–89.3) | 15 |
| Urine L-2 (SeronormTM) | 536 ± 12 (2.3) | 94.9 | 565 (452–679) | 12 |
| QM-U-Q2324 | 143 ± 4 (3.0) | 100.7 | 142 (113–171) | 14 |
| QM-U-Q2404 | 252 ± 3 (1.3) | 100.1 | 252 (202–302) | 13 |
| QM-U-Q2406 | 113 ± 2 (1.5) | 99.2 | 114 (90.3–138) | 15 |
| QM-U-Q2405 | 106 ± 3 (3.1) | 98.2 | 108 (85.2–131) | 15 |
| QM-U-Q2405 (50% LM) b | 100 ± 4 (3.9) | 92.6 | 108 (85.2–131) | 15 |
| QM-U-Q2405 (50% MM) b | 107 ± 1 (1.3) | 99.2 | 108 (85.2–131) | 15 |
| Spike Test (in QM-U-Q2405) d | 100 ± 1 (1.4) | 99.6 | 100 | 15 |
| SERUM | ||||
| Serum L-2 (SeronormTM) | 53.5 ± 2 (3.8) | 78.6 | 68 c | 17 |
| QM-S-Q2307 | 60.1 ± 0.5 (0.9) | 106.3 | 56.5 (38–75) | 16 |
| QM-S-Q2308 | 86 ± 0.6 (0.7) | 103.5 | 83.1 (59.8–106) | 15 |
| QM-S-Q2407 | 117 ± 3 (2.4) | 106.1 | 110 (81.8–138) | 15 |
| QM-S-Q2408 | 57.8 ± 1.7 (2.9) | 104.1 | 55.5 (37.2–73.8) | 16 |
| QM-S-Q2308 (50% LM) b | 81.7 ± 3.6 (4.5) | 98.3 | 83.1 (59.8–106) | 15 |
| QM-S-Q2308 (50% MM) b | 89.1 ± 3.2 (3.6) | 107.2 | 83.1 (59.8–106) | 15 |
| Spike Test (in QM-S-Q2407) d | 105 ± 4 (3.6) | 105.1 | 100 | 15 |
| Sample | Br (µg L−1) | I (µg L−1) | ||
|---|---|---|---|---|
| <8 h | 36–48 h | <8 h | 36–48 h | |
| URINE | ||||
| QM-U-Q2324 | 3193 ± 107 (3.3) | 3256 ± 68 (2.1) | 143 ± 4 (3) | 139 ± 3 (2.2) |
| QM-U-Q2404 | 1201 ± 13 (1.1) | 1212 ± 27 (2.2) | 252 ± 3 (1.3) | 242 ± 9 (3.6) |
| QM-U-Q2405 | 1780 ± 50 (2.8) | 1822 ± 60 (3.3) | 106 ± 3 (3.1) | 103 ± 2 (2.2) |
| QM-U-Q2406 | 1231 ± 28 (2.3) | 1236 ± 35 (2.9) | 113 ± 2 (1.5) | 109 ± 2 (2.0) |
| SERUM | ||||
| QM-S-Q2307 | 2258 ± 30 (1.3) | 2320 ± 39 (1.7) | 60.1 ± 0.5 (0.9) | 59.9 ± 1 (1.6) |
| QM-S-Q2308 | 2623 ± 47 (1.8) | 2747 ± 89 (3.2) | 86.0 ± 0.6 (0.7) | 85.6 ± 0.2 (0.2) |
| QM-S-Q2407 | 3111 ± 43 (1.4) | 3220 ± 97 (3.0) | 117 ± 3 (2.4) | 113 ± 1 (0.9) |
| QM-S-Q2408 | 2729 ± 36 (1.3) | 2826 ± 86 (3.0) | 57.8 ± 1.7 (2.9) | 58.1 ± 0.2 (0.4) |
| Matrix | Analyte(s) | Sample Preparation (SV/DF/Dil.) a | Calibration Range (µg/L) b | LOD (µg/L) c | Reference |
|---|---|---|---|---|---|
| Urine, Serum | I, Br | SV: 0.1 mL; DF: 20×; Dil.: 10 mM NH3 + 0.1% EDTA. | I: 0.05–100 Br: 0.05–1000 | I: 0.24 Br: 0.78 | This work |
| Serum | I, Br | SV: Not reported; DF: 10×; Dil.: 1% TMAH + 0.01% Triton X-100. | I: 20–200 Br: 200–2000 | NR d | [7] |
| Saliva | I, Br | SV: 0.2 mL; DF: 20×; Dil.: 25 mM NH3. | I: 0.1–1 Br: 1–10 | I: 10 Br: 30 | [10] |
| Urine | I | SV: 0.5 mL; DF: 10×; Dil: 1% TMAH + 0.01% Triton X-100. | I: 1–100 | NR d | [18] |
| Urine, Serum, Plasma, Breast milk | I | SV: 0.2 mL; DF: 10×; Dil.: 7 mM NH3 + 1.5% iPrOH. | I: 1–100 | I: 0.233 | [31] |
| Urine | I | SV: 1.0 mL; DF: 10×; Dil.: 57 mM NH3 + 0.1% EDTA. | I: 3–203 | I: 3.3 | [36] |
| Urine | I | SV: 0.5 mL; DF: 20×; Dil.: 1.5% HCl + Triton X-100. | NR d | I: 4 | [41] |
| Urine, Plasma | I, Br | SV: 0.2 mL; DF: 10×; Dil.: 1% HNO3. | I: 10–40 Br: 400–1600 | I: 1.6 Br: 52 | [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Schaefer Nunes, T.; Schmidt, L.; Peterson, K.; Wright, R.; Landero-Figueroa, J.A. Iodine and Bromine Analysis in Human Urine and Serum by ICP-MS, Tailored for High-Throughput Routine Analysis in Population-Based Studies. Analytica 2026, 7, 6. https://doi.org/10.3390/analytica7010006
Schaefer Nunes T, Schmidt L, Peterson K, Wright R, Landero-Figueroa JA. Iodine and Bromine Analysis in Human Urine and Serum by ICP-MS, Tailored for High-Throughput Routine Analysis in Population-Based Studies. Analytica. 2026; 7(1):6. https://doi.org/10.3390/analytica7010006
Chicago/Turabian StyleSchaefer Nunes, Thieli, Lucas Schmidt, Kayla Peterson, Rosalind Wright, and Julio Alberto Landero-Figueroa. 2026. "Iodine and Bromine Analysis in Human Urine and Serum by ICP-MS, Tailored for High-Throughput Routine Analysis in Population-Based Studies" Analytica 7, no. 1: 6. https://doi.org/10.3390/analytica7010006
APA StyleSchaefer Nunes, T., Schmidt, L., Peterson, K., Wright, R., & Landero-Figueroa, J. A. (2026). Iodine and Bromine Analysis in Human Urine and Serum by ICP-MS, Tailored for High-Throughput Routine Analysis in Population-Based Studies. Analytica, 7(1), 6. https://doi.org/10.3390/analytica7010006

