Development of κ-Carrageenan Films Reinforced with Magnesium Oxide Nanoparticles for the Potential Treatment of Chronic Wounds: In Vitro and In Vivo Insights
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. 2k Experimental Design and Development of κ-C-PEO Films
2.3. Analysis of the Tensile Strength, Thickness, Swelling Capacity, and Water Solubility of κ-C-PEO Films
2.4. Characterization of κ-C-PEO Films
2.5. Strains Culture and Antibacterial Activity Analysis of κ-C-PEO Films
2.6. Treatment of A. salina with κ-C-PEO Films
2.7. Statistical Analysis
3. Results
3.1. Analysis of Tensile Strength, Swelling Capacity, and Thickness
3.2. Effect of Outcome Variables on κ-C-PEO Films
3.3. Characterization of DS and DS-MgO-NPs
3.3.1. SEM Analysis
3.3.2. TGA and DTA Analysis
3.3.3. FTIR Analysis
4. Biological Activities
4.1. Antibacterial Activity
4.2. Treatment of A. salina with DS and DS-MgO-NPs
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, H.; Li, Y.; Jin, S.; Zhai, W.; Gao, Y.; Pu, L. Epidemiological Characteristics and Factors Affecting Healing in Unintentional Pediatric Wounds. Front. Public Health 2024, 12, 1352176. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, M.; Moghaddam, A.; Amiri, A.M.; Charoghdoozi, K.; Mohammadi, M.; Dehnavi, S.; Orazizadeh, M. Improving the Wound Healing Process: Pivotal Role of Mesenchymal Stromal/Stem Cells and Immune Cells. Stem Cell Rev. Rep. 2025, 21, 680–697. [Google Scholar] [CrossRef]
- Kuan, C.-H.; Chang, L.; Ho, C.-Y.; Tsai, C.-H.; Liu, Y.-C.; Huang, W.-Y.; Wang, Y.-N.; Wang, W.-H.; Wang, T.-W. Immunomodulatory Hydrogel Orchestrates Pro-Regenerative Response of Macrophages and Angiogenesis for Chronic Wound Healing. Biomaterials 2025, 314, 122848. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Yang, X.; Qin, X.; Shen, Y.; Luo, Y.; Yang, L.; Ke, X.; Yang, R. Co-Assembled Supramolecular Hydrogel of Asiaticoside and Panax notoginseng Saponins for Enhanced Wound Healing. Eur. J. Pharm. Biopharm. 2025, 207, 114617. [Google Scholar] [CrossRef]
- Hou, Y.; Wei, D.; Zhang, Z.; Lei, T.; Li, S.; Bao, J.; Guo, H.; Tan, L.; Xie, X.; Zhuang, Y.; et al. Downregulation of Nutrition Sensor GCN2 in Macrophages Contributes to Poor Wound Healing in Diabetes. Cell Rep. 2024, 43, 113658. [Google Scholar] [CrossRef]
- Niu, E.F.; Honig, S.E.; Wang, K.E.; Amro, C.; Davis, H.D.; Habarth-Morales, T.E.; Broach, R.B.; Fischer, J.P. Obesity as a Risk Factor in Cosmetic Abdominal Body Contouring: A Systematic Review and Meta-Analysis. Aesthetic Plast. Surg. 2024, 48, 2121–2131. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; You, H.; Ding, J.; Shi, D.; Long, C.; Li, Y.; Luo, Z.; He, X. Platelets Could Be Key Regulators of Epithelial/Endothelial-to- Mesenchymal Transition in Atherosclerosis and Wound Healing. Med. Hypotheses 2024, 189, 111397. [Google Scholar] [CrossRef]
- Sen, C.K. Human Wound and Its Burden: Updated 2020 Compendium of Estimates. Adv. Wound Care 2021, 10, 281–292. [Google Scholar] [CrossRef]
- Pereira, J.M.; Matos, A.C. Plasma Rich in Growth Factors (PRGF) Technology as Adjuvant to Ab Externo Trabeculectomy. Int. Ophthalmol. 2024, 44, 332. [Google Scholar] [CrossRef]
- Tombulturk, F.K.; Soydas, T.; Kanigur-Sultuybek, G. Topical Metformin Accelerates Wound Healing by Promoting Collagen Synthesis and Inhibiting Apoptosis in a Diabetic Wound Model. Int. Wound J. 2024, 21, e14345. [Google Scholar] [CrossRef]
- Padalhin, A.; Ryu, H.S.; Yoo, S.H.; Abueva, C.; Seo, H.H.; Park, S.Y.; Chung, P.-S.; Woo, S.H. Antiseptic, Hemostatic, and Wound Activity of Poly(Vinylpyrrolidone)-Iodine Gel with Trimethyl Chitosan. Int. J. Mol. Sci. 2024, 25, 2106. [Google Scholar] [CrossRef] [PubMed]
- Khalatbary, A.R.; Sarabandi, S.; Ahmadi, F.; Kasmaie, F.M.; Sadeghi, N.; Soleimani, S.; Disfani, R.A.; Raoofi, A.; Nasiry, D. Transplantation of Bioengineered Dermal Derived Matrix-Scaffold in Combination with Hyperbaric Oxygen Therapy Improves Wound Healing in Diabetic Rats. Tissue Cell 2024, 89, 102462. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, T.; Han, F.; Cao, L.; Li, M.; Ge, Z.; Sun, H.; Wu, H.; Wu, W.; Zhou, N.; et al. A Wearable Self-Powered Microneedle System Based on Conductive Drugs for Infected Wound Healing: A New Electrical Stimulation Delivery Strategy. Chem. Eng. J. 2024, 480, 148347. [Google Scholar] [CrossRef]
- Malakar, C.; Kashyap, B.; Bhattacharjee, S.; Chandra Kalita, M.; Mukherjee, A.K.; Deka, S. Antibiofilm and Wound Healing Efficacy of Rhamnolipid Biosurfactant against Pathogenic Bacterium Staphylococcus aureus. Microb. Pathog. 2024, 195, 106855. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Nie, L.; Liu, P.; Xiong, X.; Chen, F.; Liu, X.; Bu, P.; Zhou, B.; Tan, M.; Zhan, F.; et al. From Hemostasis to Proliferation: Accelerating the Infected Wound Healing through a Comprehensive Repair Strategy Based on GA/OKGM Hydrogel Loaded with MXene@TiO2 Nanosheets. Biomaterials 2024, 308, 122548. [Google Scholar] [CrossRef]
- Cai, P.-F.; Zheng, B.-D.; Xu, Y.-L.; Li, B.-X.; Liu, Z.-Y.; Huang, Y.-Y.; Ye, J.; Xiao, M.-T. Multifunctional Fish-Skin Collagen-Based Hydrogel Sealant with Dual-Dynamic-Bond Cross-Linked for Rapid Hemostasis and Accelerated Wound Healing. Int. J. Biol. Macromol. 2024, 266, 131179. [Google Scholar] [CrossRef]
- Uberoi, A.; McCready-Vangi, A.; Grice, E.A. The Wound Microbiota: Microbial Mechanisms of Impaired Wound Healing and Infection. Nat. Rev. Microbiol. 2024, 22, 507–521. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Zhang, J.; Huang, Y.; Wu, Y.; Wang, Y.; Zhang, R. Morphological Variability of Escherichia coli Colonizing Human Wounds: A Case Report. BMC Infect. Dis. 2025, 25, 440. [Google Scholar] [CrossRef]
- Elshimy, R.; El-Shiekh, R.A.; Okba, M.M.; Ashour, R.M.S.; Ibrahim, M.A.; Hassanen, E.I.; Aboul-Ella, H.; Ali, M.E. Unveiling the Antimicrobial, Antivirulence, and Wound-Healing Accelerating Potentials of Resveratrol against Carbapenem-Resistant Pseudomonas aeruginosa (CRPA)-Septic Wound in a Murine Model. Inflammopharmacology 2025, 33, 401–416. [Google Scholar] [CrossRef]
- Elhosseini, M.A.; El-Banna, T.E.; Sonbol, F.I.; El-Bouseary, M.M. Potential Antivirulence Activity of Sub-Inhibitory Concentrations of Ciprofloxacin against Proteus Mirabilis Isolates: An in-Vitro and in-Vivo Study. Ann. Clin. Microbiol. Antimicrob. 2024, 23, 48. [Google Scholar] [CrossRef]
- Kandaswamy, K.; Prasad Panda, S.; Subramanian, R.; Khan, H.; Rafi Shaik, M.; Althaf Hussain, S.; Guru, A.; Arockiaraj, J. Synergistic Berberine Chloride and Curcumin-Loaded Nanofiber Therapies against Methicillin-Resistant Staphylococcus aureus Infection: Augmented Immune and Inflammatory Responses in Zebrafish Wound Healing. Int. Immunopharmacol. 2024, 140, 112856. [Google Scholar] [CrossRef] [PubMed]
- Chimi, L.Y.; Noubom, M.; Bisso, B.N.; Singor Njateng, G.S.; Dzoyem, J.P. Biofilm Formation, Pyocyanin Production, and Antibiotic Resistance Profile of Pseudomonas aeruginosa Isolates from Wounds. Int. J. Microbiol. 2024, 2024, 1207536. [Google Scholar] [CrossRef]
- Yang, S.; Liang, J.; Wang, N.; Ouyang, X.-K.; Hu, J. Light-Triggered Release of Nitric Oxide from Chitosan-Based Cationic Hydrogels for Promoting Infected Wounds Healing. Int. J. Biol. Macromol. 2025, 304, 140998. [Google Scholar] [CrossRef] [PubMed]
- Vicente-da-Silva, J.V.; Pereira, J.O.; do Carmo, F.A.; Patricio, B.F. Skin and Wound Healing: Conventional Dosage versus Nanobased Emulsions Forms. ACS Omega 2025, 10, 12837–12855. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Huang, X.; Wu, Q.; Chu, S.; Bai, X.; Zhou, Y.; You, J.; Yang, C.; Tan, H. Multifunctional Gelatin Nanoparticle Stabilized-Pickering Emulsion Hydrogel Based on Dextran and Amikacin with Controlled Drug Release and Enhanced Antibacterial Capability for Promoting Infected Wound Healing. Int. J. Biol. Macromol. 2024, 262, 130172. [Google Scholar] [CrossRef]
- Tang, Y.; Shu, X.; He, G.; Zhang, Y.; Zhao, Y.; Yuan, H.; Yu, J.; Guo, J.; Chen, Q. Vancomycin-Loaded Hydrogels with Thermal-Responsive, Self-Peeling, and Sustainable Antibacterial Properties for Wound Dressing. J. Mater. Chem. B 2024, 12, 752–761. [Google Scholar] [CrossRef]
- Khan, N.U.; Chengfeng, X.; Jiang, M.-Q.; Khan, Z.U.; Razzaq, A.; Ullah, A.; Ni, J.; Abdullah; Iqbal, H.; Jin, Z.M. Obstructed Vein Delivery of Ceftriaxone via Poly(Vinyl-Pyrrolidone)-Iodine-Chitosan Nanofibers for the Management of Diabetic Foot Infections and Burn Wounds. Int. J. Biol. Macromol. 2024, 277, 134166. [Google Scholar] [CrossRef]
- An, N.V.; Kien, H.T.; Hoang, L.H.; Cuong, N.H.; Quang, H.X.; Le, T.D.; Thang, T.B.; Viet, T.T.; Thuc, L.C.; Hung, D.V.; et al. Antimicrobial Resistance Patterns of Pathogens Isolated from Patients with Wound Infection at a Teaching Hospital in Vietnam. Infect. Drug Resist. 2024, 17, 3463–3473. [Google Scholar] [CrossRef]
- Bakhshi, V.; Poursadegh, H.; Amini-Fazl, M.S.; Salari, D.; Javanbakht, S. Synthesis and Characterization of Bio-Nanocomposite Hydrogel Beads Based on Magnetic Hydroxyapatite and Chitosan: A pH-Sensitive Drug Delivery System for Potential Implantable Anticancer Platform. Polym. Bull. 2024, 81, 7499–7518. [Google Scholar] [CrossRef]
- More, R.V.; Antanitta, S.V.; Khonde, R.; Kandasubramanian, B. Cellulose and Derivatives Serving as Natural, Versatile and Biocompatible Polymers in Biomedical Applications. Int. J. Polym. Mater. Polym. Biomater. 2024, 74, 923–937. [Google Scholar] [CrossRef]
- Stavarache, C.; Ghebaur, A.; Serafim, A.; Vlăsceanu, G.M.; Vasile, E.; Gârea, S.A.; Iovu, H. Fabrication of K-Carrageenan/Alginate/Carboxymethyl Cellulose basedScaffolds via 3D Printing for Potential Biomedical Applications. Polymers 2024, 16, 1592. [Google Scholar] [CrossRef] [PubMed]
- Lewicka, K.; Smola-Dmochowska, A.; Dobrzyński, P.; Śmigiel-Gac, N.; Jelonek, K.; Musiał-Kulik, M.; Rychter, P. Microspheres Based on Blends of Chitosan Derivatives with Carrageenan as Vitamin Carriers in Cosmeceuticals. Polymers 2024, 16, 1815. [Google Scholar] [CrossRef] [PubMed]
- Santinon, C.; Borges, A.; Simões, M.; Gonçalves, A.S.C.; Beppu, M.M.; Vieira, M.G.A. Visible-Light Photoactivated Proanthocyanidin and Kappa-Carrageenan Coating with Anti-Adhesive Properties against Clinically Relevant Bacteria. Int. J. Biol. Macromol. 2024, 263, 130611. [Google Scholar] [CrossRef] [PubMed]
- Valentini, G.; Bazzo, G.C.; Argenta, D.F.; Conte, J.; Saatkamp, R.H.; Caon, T.; Stulzer, H.K.; Parize, A.L. Development of Hydroxypropylmethylcellulose Acetate Succinate and Kappa Carrageenan Films Loaded with Curcumin for Wound Healing. J. Drug Deliv. Sci. Technol. 2024, 97, 105813. [Google Scholar] [CrossRef]
- Sari, M.H.M.; Saccol, C.P.; Custódio, V.N.; da Rosa, L.S.; da Costa, J.S.; Fajardo, A.R.; Ferreira, L.M.; Cruz, L. Carrageenan-Xanthan Nanocomposite Film with Improved Bioadhesion and Permeation Profile in Human Skin: A Cutaneous-Friendly Platform for Ketoprofen Local Delivery. Int. J. Biol. Macromol. 2024, 265, 130864. [Google Scholar] [CrossRef]
- Mohammadi, Y.; Shahbazi, Y.; Shavisi, N. Intelligent Locust Bean Gum-k-Carrageenan Nanofibrous Mats with Rosa Canina Petal Anthocyanins and Chitosan Nanoparticles: Preparation, Characterization, and Application for Monitoring of Beef Meat Freshness. LWT 2024, 208, 116707. [Google Scholar] [CrossRef]
- Deng, H.; Zhang, W.; Ramezan, Y.; Riahi, Z.; Khan, A.; Huang, Z. Antibacterial and Antioxidant Plant-Derived Aldehydes: A New Role as Cross-Linking Agents in Biopolymer-Based Food Packaging Films. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70089. [Google Scholar] [CrossRef]
- Krishna, D.V.; Sankar, M.R.; Reddy, T.N. Effect of Glyoxal Concentration and Nanoparticles Reinforcement on the Functional Properties of Composite Hydrogel for Biomedical Applications. Macromol. Res. 2025, 33, 569–592. [Google Scholar] [CrossRef]
- Hassan, G.; Özuğur Uysal, B. Effect of MoS2 on Simple and Novel PEG/κ-Carrageenan Hydrogels for TNBC Cancer Drug Delivery. J. Macromol. Sci. Part B 2025, 64, 135–149. [Google Scholar] [CrossRef]
- Jia, H.; Wu, C.; Huang, M.; Zhu, Q. An Intelligent Fruit Freshness Monitoring System Using Hydrophobic Indicator Labels Based on Methylcellulose, k-Carrageenan, and Sodium Tripolyphosphate, Combined with Deep Learning. Int. J. Biol. Macromol. 2025, 291, 140001. [Google Scholar] [CrossRef]
- Alatabe, M.J.A.; Ghorbanpour, M. Development of Biodegradable Chitosan Films Reinforced with Zinc-Exchanged Bentonite for Enhanced Mechanical, Water Barrier, and Antibacterial Properties. Indian Chem. Eng. 2025, 1–10. [Google Scholar] [CrossRef]
- Govindasamy, C.; Khan, M.I.; Hussein-Al-Ali, S.H.; Abualassal, Q.; helmi Abudayeh, Z.; Arulselvan, P.; Bharathi, M.; Surya, P. Bio-Fabrication of Chitosan-Stabilized Magnesium Oxide Nanomaterials: Investigation of Photocatalytic, in Vitro Cytotoxicity Activities and Apoptosis in Oral Squamous Carcinoma Cells. Int. J. Biol. Macromol. 2025, 300, 139926. [Google Scholar] [CrossRef]
- Guo, J.; Yao, H.; Chang, L.; Zhu, W.; Zhang, Y.; Li, X.; Yang, B.; Dai, B.; Chen, X.; Lei, L.; et al. Magnesium Nanocomposite Hydrogel Reverses the Pathologies to Enhance Mandible Regeneration. Adv. Mater. 2025, 37, 2312920. [Google Scholar] [CrossRef] [PubMed]
- Abbas, S.F.; Haider, A.J.; Al-Musawi, S.; Abbas, E.M.; Alnayli, R.S.; Taha, B.A.; Choubani, M.; Arsad, N.; Ibrahim, H.I. Optimizing Wound Healing with Antibacterial Metal Oxide Nanoparticles: A Comparative Analysis of Efficacy and Biological Mechanisms. J. Drug Deliv. Sci. Technol. 2025, 105, 106563. [Google Scholar] [CrossRef]
- Dumas, L.; de Souza, M.C.; Bonafe, E.G.; Martins, A.F.; Monteiro, J.P. Optimized Incorporation of Silver Nanoparticles onto Cotton Fabric Using K-Carrageenan Coatings for Enhanced Antimicrobial Properties. ACS Appl. Bio Mater. 2024, 7, 6908–6918. [Google Scholar] [CrossRef] [PubMed]
- Antonio Zurita-Mápula, J.; Alcalá-Alcalá, S.; Alberto Bernal-Chávez, S. Lipid Functionalization of Magnesium Oxide Nanoparticles: Synthesis and Characterization. Mater. Lett. 2024, 368, 136660. [Google Scholar] [CrossRef]
- Mueller, E.; Hoffmann, T.G.; Schmitz, F.R.W.; Helm, C.V.; Roy, S.; Bertoli, S.L.; de Souza, C.K. Development of Ternary Polymeric Films Based on Cassava Starch, Pea Flour and Green Banana Flour for Food Packaging. Int. J. Biol. Macromol. 2024, 256, 128436. [Google Scholar] [CrossRef]
- Singh, P.; Verma, C.; Mukhopadhyay, S.; Gupta, A.; Gupta, B. Preparation of Thyme Oil Loaded κ-Carrageenan-Polyethylene Glycol Hydrogel Membranes as Wound Care System. Int. J. Pharm. 2022, 618, 121661. [Google Scholar] [CrossRef]
- Liu, L.; Wang, H.; Li, X.; Zhang, L.; Zhang, X.; Xu, X. Purification and Structural Characterization of a Neutral Polysaccharide from Boletus Auripes Using Self-Made Quaternary Chitosan Cryogel. Int. J. Biol. Macromol. 2025, 291, 139091. [Google Scholar] [CrossRef]
- Shokri, N.; Elahimanesh, M.; Bakhshandeh, M.; Najafi, M. Heparin Suppresses FoxO1/pFoxO1 Signaling Axis in Vascular Smooth Muscle Cells. Biochem. Biophys. Rep. 2025, 41, 101954. [Google Scholar] [CrossRef]
- Ronsivalle, V.; Santonocito, S.; Giudice, R.; Bocchieri, S.; Didomenico, S.; Cicciù, M. The Role of Hyaluronic Acid in Alveolar Ridge Preservation: A Systematic Review of Its Biological and Regenerative Potential According to PRISMA Guidelines and the Cochrane Handbook. Biomedicines 2025, 13, 451. [Google Scholar] [CrossRef] [PubMed]
- Mashhour, D.M.; Al-Hossainy, A.F.; Abd El-Aal, M.; Ibrahim, S.M. Combining Computational and Experimental Studies for Synthesis of Oxidative Derivatives of Glycogen Using Kinetics and Mechanism of Oxidation of Glycogen by Alkaline Permanganate: Homogenous Catalysis. Ind. Eng. Chem. Res. 2025, 64, 4353–4368. [Google Scholar] [CrossRef]
- Wang, S.; Nie, F.; Lin, Z.; Xu, J.; Guo, Y. Natural Polysaccharide-Small Molecule Smart Responsive Nanogels: Design, Synthesis, and Synergistic Chemoimmunotherapy for Tumors. Int. J. Biol. Macromol. 2025, 305, 140930. [Google Scholar] [CrossRef]
- Cui, Z.; Shi, C.; An, R.; Tang, Y.; Li, Y.; Cao, X.; Jiang, X.; Liu, C.-C.; Xiao, M.; Xu, L. In Silico-Guided Discovery of Polysaccharide Derivatives as Adjuvants in Nanoparticle Vaccines for Cancer Immunotherapy. ACS Nano 2025, 19, 2099–2116. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhao, Z.; Nooshin Banitaba, S.; Khademolqorani, S.; Han, X.; Chen, G. Multipurpose Triadic MXene/Garlic/Gellan Gum-Based Architecture in the Horizon of Bone Tissue Regeneration. Nanoscale 2025, 17, 2528–2544. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, H.; Huang, Y.; Wei, Y.; Chen, J. Naturally Sourced Hydrogels: Emerging Fundamental Materials for next-Generation Healthcare Sensing. Chem. Soc. Rev. 2023, 52, 2992–3034. [Google Scholar] [CrossRef]
- Hassan, H.M.A.; Alruwaili, H.A.; Alhumaimess, M.S.; Alanazi, A.H.; El-Aassar, M.R.; Alshammari, M.S.; Hussein, M.F.; Alsohaimi, I.H. Sustainable Nitrophenol Reduction Using Ce-Mof-808-Supported Bimetallic Nanoparticles Optimized by Response Surface Methodology. Environ. Res. 2025, 264, 120340. [Google Scholar] [CrossRef]
- Choyal, V.; Mishra, S.; Luhadiya, N.; Kundalwal, S.I. Development and Evaluation of Machine-Learned Interatomic Potentials for Carbon Nanotubes for Molecular Dynamics Simulations. Carbon. Lett. 2025, 36, 1311–1326. [Google Scholar] [CrossRef]
- Reddy, M.R.; Gugulothu, S.K.; Krishnaiah, T.; Grandhi, S.K. Enhanced Mechanical Properties and Machinability of Al-Cu-SiC-GNP Smart Hybrid Composite Using Machine Learning Optimization. Arab. J. Sci. Eng. 2025. [Google Scholar] [CrossRef]
- Abdullah, J.A.A.; Jiménez-Rosado, M.; Benítez, J.J.; Guerrero, A.; Romero, A. Biopolymer-Based Films Reinforced with FexOy-Nanoparticles. Polymers 2022, 14, 4487. [Google Scholar] [CrossRef]
- Sarhadi, H.; Shahdadi, F.; Salehi Sardoei, A.; Hatami, M.; Ghorbanpour, M. Investigation of Physio-Mechanical, Antioxidant and Antimicrobial Properties of Starch–Zinc Oxide Nanoparticles Active Films Reinforced with Ferula Gummosa Boiss Essential Oil. Sci. Rep. 2024, 14, 5789. [Google Scholar] [CrossRef] [PubMed]
- Villavicencio-Carrisoza, O.; Grobeisen-Duque, O.; Garcia-Correa, A.L.; Monroy-Muñoz, I.E.; Villeda-Gabriel, G.; Sosa-González, I.E.; Flores-Herrera, H.; Figueroa-Damian, R.; Cerna-Cortes, J.F.; Rivera-Gutierrez, S.; et al. Advancing Understanding of Escherichia coli Pathogenicity in Preterm Neonatal Sepsis. Microorganisms 2025, 13, 219. [Google Scholar] [CrossRef]
- Luo, C.; Gu, H.; Pan, D.; Zhao, Y.; Zheng, A.; Zhu, H.; Zhang, C.; Li, C.; Zhang, J.; Chen, C.; et al. Pseudomonas aeruginosa T6SS Secretes an Oxygen-Binding Hemerythrin to Facilitate Competitive Growth under Microaerobic Conditions. Microbiol. Res. 2025, 293, 128052. [Google Scholar] [CrossRef]
- Pont, S.; Nilly, F.; Berry, L.; Bonhoure, A.; Alford, M.A.; Louis, M.; Nogaret, P.; Bains, M.; Lesouhaitier, O.; Hancock, R.E.W.; et al. Intracellular Pseudomonas aeruginosa Persist and Evade Antibiotic Treatment in a Wound Infection Model. PLoS Pathog. 2025, 21, e1012922. [Google Scholar] [CrossRef]
- Sunil Kumar, B.T.; Reddy, J.P.; Vanajakshi, V.; Dasalkar, A.H.; Yannam, S.K.; Hebbar, U.H.; Singh, S.A. Development and Characterization of Carrageenan-Based Antibacterial Films Incorporated with Natural Melanin Pigment from Niger Seed Hulls (Guizotia abyssinica) and Their Efficacy to Enhance the Shelf-Life of Strawberries. Food Control 2025, 174, 111235. [Google Scholar] [CrossRef]
- Zhou, F.; Wang, D.; Zhang, J.; Li, J.; Lai, D.; Lin, S.; Hu, J. Preparation and Characterization of Biodegradable κ-Carrageenan Based Anti-Bacterial Film Functionalized with Wells-Dawson Polyoxometalate. Foods 2022, 11, 586. [Google Scholar] [CrossRef] [PubMed]
- Simona, J.; Dani, D.; Petr, S.; Marcela, N.; Jakub, T.; Bohuslava, T. Edible Films from Carrageenan/Orange Essential Oil/Trehalose—Structure, Optical Properties, and Antimicrobial Activity. Polymers 2021, 13, 332. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Liu, Y.; Cao, Y.; Zhang, Y.; Zhe, T.; Guo, Z.; Sun, X.; Wang, Q.; Wang, L. Copper Sulfide Nanoparticle-Carrageenan Films for Packaging Application. Food Hydrocoll. 2020, 109, 106094. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.-W. Carrageenan-Based Antimicrobial Bionanocomposite Films Incorporated with ZnO Nanoparticles Stabilized by Melanin. Food Hydrocoll. 2019, 90, 500–507. [Google Scholar] [CrossRef]
- Saedi, S.; Shokri, M.; Priyadarshi, R.; Rhim, J.-W. Carrageenan-Based Antimicrobial Films Integrated with Sulfur-Coated Iron Oxide Nanoparticles (Fe3O4@SNP). ACS Appl. Polym. Mater. 2021, 3, 4913–4923. [Google Scholar] [CrossRef]
- Khazaei, M.; Meskaraf-Asadabadi, M.; Khazaei, F.; Kadivarian, S.; Ghanbari, E. Green Synthesis of Magnesium Oxide Nanoparticles Using the Extract of Falcaria Vulgaris to Enhance the Healing of Burn Wounds. J. Drug Target. 2025, 33, 761–772. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, D.; Kumar, R.; Thakur, N.; Singh, M.; Kumar, K. Ocimum Sanctum-Mediated Co/Cu/Zn-Doped Magnesium Oxide Nanoparticles: Photocatalytic, Antibacterial, and Antioxidant Properties for Environmental Remediation. Hybrid Adv. 2024, 6, 100199. [Google Scholar] [CrossRef]
- Papadaki, A.; Lappa, I.K.; Manikas, A.C.; Pastore Carbone, M.G.; Natsia, A.; Kachrimanidou, V.; Kopsahelis, N. Grafting Bacterial Cellulose Nanowhiskers into Whey Protein/Essential Oil Film Composites: Effect on Structure, Essential Oil Release and Antibacterial Properties of Films. Food Hydrocoll. 2024, 147, 109374. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Saravanakumar, K.; Malaikozhundan, B.; Divya, M.; Vaseeharan, B.; Durán-Lara, E.F.; Wang, M.-H. Biopolymer K-Carrageenan Wrapped ZnO Nanoparticles as Drug Delivery Vehicles for Anti MRSA Therapy. Int. J. Biol. Macromol. 2020, 144, 9–18. [Google Scholar] [CrossRef]
- Cao, Y.; Song, Z.; Ni, W.; Ma, Y.; Xin, K.; Yu, Q.; Zhang, L. Composite Nanoparticle-Filled Oxidized Hydroxypropyl Starch/Carrageenan Films: Robust, Water-Resistant, Antibacterial, Antioxidant and Biodegradable Properties. Food Hydrocoll. 2024, 155, 110224. [Google Scholar] [CrossRef]
- Du, X.-X.; Ge, Z.-T.; Hao, H.-S.; Bi, J.-R.; Hou, H.-M.; Zhang, G.-L. An Antibacterial Film Using κ-Carrageenan Loaded with Benzyl Isothiocyanate Nanoemulsion: Characterization and Application in Beef Preservation. Int. J. Biol. Macromol. 2024, 276, 133689. [Google Scholar] [CrossRef]
- Kumari, S.; Kumari, A.; Ahmed, J.; Jasrotia, R.; Sillanpää, M.; Lakshmaiya, N.; Kondal, N.; Kandwal, A.; Sharma, R. Enhancing UV Protection and Antimicrobial Properties in Food Packaging Through the Use of Copper Nanoparticles and κ-Carrageenan Based Nanocomposite Film. J. Inorg. Organomet. Polym. 2024, 34, 5538–5550. [Google Scholar] [CrossRef]
- Amokrane-Aidat, R.; Brahmi, F.; Chennit, B.; Smaoui, S.; Elhadef, K.; Chaari, M.; Madani, K.; Boulekbache-Makhlouf, L. Sustainable Gelatin-Kappa Carrageenan Active Packaging with Mekwiya Date Seeds to Enhance Goat Meat Quality and Shelf Life. Int. J. Biol. Macromol. 2024, 279, 135285. [Google Scholar] [CrossRef]
Factors | Levels | Outcome Variables | |
---|---|---|---|
Low | High | ||
κ-carrageenan concentration | 0.5 | 2.5 | Tensile strength |
PEO concentration | 0.5 | 1.0 | Thickness |
PEO MW | N80 | N303 | Swelling capacity |
Sample | κ-Carrageenan | PEO (%) | PEO MW | Tensile Strength (kPa) | Swelling Capacity (%) | Thickness (mm) |
---|---|---|---|---|---|---|
1 | 2.5 | 0.50 | N80 | 214 | 44.42 | 0.05 |
2 | 2.5 | 0.75 | N303 | 87 | 34.52 | 0.10 |
4 | 2.5 | 0.50 | N303 | 129 | 52.01 | 0.19 |
5 | 2.5 | 1.00 | N303 | 92 | 3.76 | 0.13 |
7 | 2.5 | 1.00 | N80 | 87 | 24.88 | 0.29 |
8 | 1.5 | 0.75 | N80 | 46 | 15.89 | 0.06 |
9 | 0.5 | 0.50 | N80 | 92 | 0.00 | 0.06 |
Sample | Loaded Substance | Characterization Features | Reference |
---|---|---|---|
κ-carrageenan and glycerol | PA |
| [33] |
κ-carrageenan and HPMCAS | CUR |
| [34] |
κ-carrageenan | Ag-NPs |
| [45] |
κ-carrageenan and OHS | SPH-NPs |
| [75] |
κ-carrageenan | BITC |
| [76] |
κ-carrageenan and glycerol | Green synthesized Cu-NPs with Argemone mexicana extract |
| [77] |
κ-carrageenan and gelatin | Mekwiya date palm seeds extract |
| [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Vicens, L.; Mejía-Méndez, J.L.; López-Mena, E.R.; Bernal-Chávez, S.A. Development of κ-Carrageenan Films Reinforced with Magnesium Oxide Nanoparticles for the Potential Treatment of Chronic Wounds: In Vitro and In Vivo Insights. Polysaccharides 2025, 6, 45. https://doi.org/10.3390/polysaccharides6020045
Rodríguez-Vicens L, Mejía-Méndez JL, López-Mena ER, Bernal-Chávez SA. Development of κ-Carrageenan Films Reinforced with Magnesium Oxide Nanoparticles for the Potential Treatment of Chronic Wounds: In Vitro and In Vivo Insights. Polysaccharides. 2025; 6(2):45. https://doi.org/10.3390/polysaccharides6020045
Chicago/Turabian StyleRodríguez-Vicens, Lesly, Jorge L. Mejía-Méndez, Edgar R. López-Mena, and Sergio A. Bernal-Chávez. 2025. "Development of κ-Carrageenan Films Reinforced with Magnesium Oxide Nanoparticles for the Potential Treatment of Chronic Wounds: In Vitro and In Vivo Insights" Polysaccharides 6, no. 2: 45. https://doi.org/10.3390/polysaccharides6020045
APA StyleRodríguez-Vicens, L., Mejía-Méndez, J. L., López-Mena, E. R., & Bernal-Chávez, S. A. (2025). Development of κ-Carrageenan Films Reinforced with Magnesium Oxide Nanoparticles for the Potential Treatment of Chronic Wounds: In Vitro and In Vivo Insights. Polysaccharides, 6(2), 45. https://doi.org/10.3390/polysaccharides6020045