Theoretically Estimated Experimental Adiabatic Electron Affinities of Hydrogen and Cyclohexane Molecules
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Estimation by DFT of Experimental Values of the Adiabatic Electron Affinity of Hydrogen and Cyclohexane Molecules
3.2. The Boundary Orbitals and Chemical Stability of the Cyclohexane Molecule, RA and RC
3.3. The Initial Stage of Gamma Radiolysis of Liquid Cyclohexane, Taking into Account the Formation of RC, EEM, and RA
3.4. Relative Energy Location of the Boundary Orbitals of the Cyclohexane Molecule and Its Primary Active Particles of Gamma Radiolysis
4. Conclusions
- Using DFT calculations and the constructed correlation with experimental data, it was found that the experimental values of the adiabatic electron affinity (AEA) of cyclohexane (1) and hydrogen (2) molecules in the gas phase are −2.13 eV (AEA(gas 1)) and −3.08 eV (AEA(gas 2)), respectively.
- Using independent experimental data related to the liquid phase, it was found that the experimental value of the adiabatic electron affinity of the cyclohexane molecule in the liquid phase is −2.12 eV (EA(liquid 1)).
- Thus, for the first time, it was found that EA(liquid 1) = AEA(gas 1) ≈ −2 eV.
- Upon gamma irradiation of liquid cyclohexane, all molecular hydrogen is formed at the final stage of the transformation of the energy of 60Co gamma rays (E ≈ 1.25 MeV) into the energy of three primary particles—a radical cation (E ≈ 9 eV (liquid)), an electronically excited molecule (E ≈ 7 eV (liquid)) and a radical anion (E = -AE(liquid) ≈ 2 eV)—at a ratio of 1:1:1, with total energy ΣE ≈ 18 eV (liquid).
- Using DFT calculations and the literature to date, it is shown that the cyclohexane radical anion has sufficient chemical stability to be included in the general scheme of gamma radiolysis of gaseous, liquid and solid cyclohexane.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AIP | Adiabatic Ionization Potential |
| AEA | Adiabatic Electron Affinity |
| An | Anion (−) |
| Cat | Cation (+) |
| C-H | Carbon-Hydrogen bond |
| C-C | Carbon- Carbon bond |
| c-C6H10 | Cyclohexene molecule (2′) |
| c-C6H11• | Cyclohexyl radical |
| c-C6H12 | Cyclohexane molecule (1) |
| (c-C6H11)2 | Dicyclohexyl (2″) |
| D | Dissociation energy |
| DFT | Density Functional Theory |
| E | Energy |
| EA | Electron Affinity |
| EEM | Electronically Excited Molecule (*) |
| FE | Free Electron (e−) |
| FP | Final Product |
| GGA | Generalized Gradient Approximation |
| H• | Hydrogen radical (atom) |
| H2 | Hydrogen Molecule (2) |
| HOMO | Highest Occupied Molecular Orbital |
| IP | Ionization Potential |
| LUMO | Lowest Unoccupied Molecular Orbital |
| MO | Molecular Orbital |
| Mol | Molecule |
| NFR | Neutral Free Radical |
| PAP | Primary Active Particle |
| PBE0 | One-parameter hybrid version of PBE |
| PBE | Perdew-Burke-Erzerhoff GGA functional |
| PP | Three sets of first polarization functions on all atoms |
| RA | Radical Anion (•−) |
| Rad | Radical (•) |
| RC | Radical Cation (•+) |
| RHF | Restricted Hartree-Fock |
| S | Singlet |
| SCF-MO | Self-Consistent Field-Molecular Orbital |
| SET | Single Electron Transfer |
| SOMO | Single Occupied Molecular Orbital |
| T | Triplet |
| TZV | Ahlrichs Triple-Zeta Valence basis set |
| TZVPP | TZV + PP |
| UHF | Unrestricted Hartree-Fock |
| VEA | Vertical Electron Affinity |
| VIP | Vertical Ionization Potentials |
References
- Ishaq, H.; Dincer, I.; Crawford, C. A review on hydrogen production and utilization: Challenges and opportunities. Int. J. Hydrogen Energy 2022, 47, 26238–26264. [Google Scholar] [CrossRef]
- Zainal, B.S.; Ker, P.J.; Mohamed, H.; Ong, H.C.; Fattah, I.M.R.; Rahman, S.M.A.; Nghiem, L.D.; Mahlia, T.M.I. Recent advancement and assessment of green hydrogen production technologies. Renew. Sustain. Energy Rev. 2024, 189 Pt A, 113941. [Google Scholar] [CrossRef]
- Mose, M.P.; Kannaiyan, S.; Huang, S.-J. Hydrogen carriers for hydrogen transport and storage (hydrogen Storage): A review. Mater. Chem. Phys. 2025, 345, 131252. [Google Scholar] [CrossRef]
- Serik, A.; Kuspanov, Z.; Daulbayev, C. Cost-effective strategies and technologies for green hydrogen production. Renew. Sustain. Energy Rev. 2026, 226 Pt A, 116242. [Google Scholar] [CrossRef]
- Ho, S.K.; Freeman, G.R. Radiolysis of Cyclohexane. V. Purified Liquid Cyclohexane and Solutions of Additives. J. Phys. Chem. 1964, 68, 2189–2197. [Google Scholar] [CrossRef]
- Földiak, G. (Ed.) Radiation Chemistry of Hydrocarbons; Akadémiai Kiadó: Budapest, Hungary, 1981. [Google Scholar]
- LaVerne, J.A.; Pimblott, S.M.; Wojnarovits, L. Diffusion−kinetic modeling of the γ-radiolysis of liquid cycloalkanes. J. Phys. Chem. A 1997, 101, 1628–1634. [Google Scholar] [CrossRef]
- Wojnárovits, L. Radiation Chemistry. In Handbook of Nuclear Chemistry 3; Vértes, A., Nagy, S., Klencsár, Z., Lovas, R.G., Rösch, F., Eds.; Chemical Applications of Nuclear Reactions and Radiations; Springer Science + Business Media B.V: Berlin/Heidelberg, Germany, 2011; Chapter 23; pp. 1263–1331. [Google Scholar] [CrossRef]
- Shchapin, I.Y.; Makhnach, O.V.; Klochikhin, V.L.; Nekhaev, A.I. Radiolysis products of the cyclohexane–bicyclic diene binary system. Pet. Chem. 2017, 57, 897–903. [Google Scholar] [CrossRef]
- Pikaev, A.K. Modern Radiation Chemistry: Main Regularities, Experimental Technique and Methods; Nauka: Moscow, Russia, 1985; p. 375. (In Russian) [Google Scholar]
- Ikuta, S.; Yoshihara, K.; Shiokawa, T.; Jinno, M.; Yokoyama, Y.; Ikeda, S. Photoelectron spectroscopy of cyclohexane, cyclopentane, and related compounds. Chem. Lett. 1973, 2, 1237–1240. [Google Scholar] [CrossRef]
- Watanabe, K. Ionization potentials of some molecules. J. Chem. Phys. 1957, 26, 542–547. [Google Scholar] [CrossRef]
- Bischof, P.; Hashmall, J.A.; Heilbronner, E.; Hornung, V. Photoelektronspektroskopische Bestimmung der Wechselwirkung zwischen nicht-konjugierten Doppelbindungen [1]. Vorläufige Mitteilung. Helv. Chim. Acta 1969, 52, 1745–1749. [Google Scholar] [CrossRef]
- Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P. Valence ionization energies of hydrocarbons. Helv. Chim. Acta 1977, 60, 2213–2233. [Google Scholar] [CrossRef]
- Raymonda, J.W. Rydberg states in cyclic alkanes. J. Chem. Phys. 1972, 56, 3912–3920. [Google Scholar] [CrossRef]
- Onsager, L. Initial Recombination of Ions. Phys. Rev. 1938, 54, 554. [Google Scholar] [CrossRef]
- Klein, G. Charge carrier generation and recombination in cyclohexane solutions excited by VUV light. Chem. Phys. Lett. 1986, 124, 147–151. [Google Scholar] [CrossRef]
- Ostafin, A.E.; Lipsky, S. The fluorescence action spectra of some saturated hydrocarbon liquids for excitation energies above and below their ionization thresholds. J. Chem. Phys. 1993, 98, 5408–5418. [Google Scholar] [CrossRef]
- Costner, E.A.; Long, B.K.; Navar, C.; Jockusch, S.; Lei, X.; Zimmerman, P.; Campion, A.; Turro, N.J.; Willson, C.G. Fundamental optical properties of linear and cyclic alkanes: VUV absorbance and index of refraction. J. Phys. Chem. A 2009, 113, 9337–9347. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.T.; Askew, D.; Lipsky, S. A note on the G value for the production of the lowest excited singlet state of cyclohexane. Radiat. Phys. Chem. (1977) 1982, 19, 373–375. [Google Scholar] [CrossRef]
- Howard, A.E.; Staley, S.W. Negative Ion States of Three- and Four-Membered Ring Hydrocarbons: Studied by Electron Transmission Spectroscopy. In Resonances; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1984; Volume 263, pp. 183–192. [Google Scholar] [CrossRef]
- Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Neese, F. ORCA–An Ab Initio, DFT and Semiempirical SCF-MO Package, version 3.0.1; Max-Plank-Institute for Chemical Energy Conversion: Ruhr, Germany, 2013. Available online: https://orcaforum.kofo.mpg.de/ (accessed on 26 November 2022).
- Valeev, E. Libint: High-Performance Library for Computing Gaussian Integrals in Quantum Mechanics. Available online: http://libint.valeyev.net (accessed on 19 December 2023).
- Schaefer, A.; Horn, H.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 1992, 97, 2571–2577. [Google Scholar] [CrossRef]
- The Turbomole Basis Set Library. Available online: http://ftp.chemie.uni-karlsruhe.de/pub/bases (accessed on 27 January 2024).
- Chemcraft—Graphical Software for Visualization of Quantum Chemistry Computations. Available online: https://www.chemcraftprog.com (accessed on 27 January 2024).
- Glab, W.L.; Hessler, J.P. Multiphoton excitation of high singlet np Rydberg states of molecular hydrogen: Spectroscopy and dynamics. Phys. Rev. A 1987, 35, 2102–2110. [Google Scholar] [CrossRef]
- McCormack, E.; Gilligan, J.M.; Cornaggia, C.; Eyler, E.E. Measurement of high Rydberg states and the ionization potential of H2. Phys. Rev. A. 1989, 39, 2260(R). [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Reutt, J.E.; Lee, Y.T.; Shirley, D.A. High resolution UV photoelectron spectroscopy of CO+2, COS+, and CS+2 using supersonic molecular beams. J. Electr. Spectrosc. Relat. Phenom. 1988, 47, 167–186. [Google Scholar] [CrossRef]
- Yencha, A.J.; Hopkirk, A.; Hiraya, A.; Donovan, R.J.; Goode, J.G.; Maier, R.R.J.; King, G.C.; Kvaran, A. Threshold photoelectron spectroscopy of Cl2 and Br2 up to 35 eV. J. Phys. Chem. 1995, 99, 7231–7241. [Google Scholar] [CrossRef]
- Chewter, L.A.; Sander, M.; Müller-Dethlefs, K.; Schlag, E.W. High resolution zero kinetic energy photoelectron spectroscopy of benzene and determination of the ionization potential. J. Chem. Phys. 1987, 86, 4737–4744. [Google Scholar] [CrossRef]
- Nemeth, G.I.; Selzle, H.L.; Schlag, E.W. Magnetic ZEKE experiments with mass analysis. Chem. Phys. Lett. 1993, 215, 151–155. [Google Scholar] [CrossRef]
- Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S. Ionization Energies, Ab Initio Assignments, and Valence Electronic Structure for 200 Molecules. In Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds; Japan Scientific Soc. Press: Tokyo, Japan; Halsted Press: New York, NY, USA, 1981; Volume 28. [Google Scholar]
- Houle, F.A.; Beauchamp, J.L. Detection and investigation of allyl and benzyl radicals by photoelectron spectroscopy. J. Am. Chem. Soc. 1978, 100, 3290–3294. [Google Scholar] [CrossRef]
- Houle, F.A.; Beauchamp, J.L. Thermal decomposition pathways of alkyl radicals by photoelectron spectroscopy. Application to cyclopentyl and cyclohexyl radicals. J. Phys. Chem. 1981, 85, 3456–3461. [Google Scholar] [CrossRef]
- Morishima, I.; Yoshikawa, K.; Yonezawa, T.; Matsumoto, H. Photoelectron spectral studies of organic free radicals. The nitroxide radical. Chem. Phys. Lett. 1972, 16, 336–339. [Google Scholar] [CrossRef]
- Cízek, M.; Horácek, J.; Domcke, W. Nuclear dynamics of the H2− collision complex beyond the local approximation: Associative detachment and dissociative attachment to rotationally and vibrationally excited molecules. J. Phys. B At. Mol. Opt. Phys. 1998, 31, 2571–2583. [Google Scholar] [CrossRef]
- Schulz, G.J. Resonances in electron impact on diatomic molecules. Rev. Mod. Phys. 1973, 45, 423–486. [Google Scholar] [CrossRef]
- Rienstra-Kiracofe, J.C.; Tschumper, G.S.; Schaefer, H.F., III; Nandi, S.; Barney Ellison, G. Atomic and molecular electron affinities: Photoelectron experiments and theoretical computations. Chem. Rev. 2002, 102, 231–282. [Google Scholar] [CrossRef]
- Knapp, A.; Echt, O.; Kreisle, D.; Mark, T.D.; Recknagel, E. Formation of long-lived CO2–, N2O– and their dimer anions, by electron attachment to van der Waals clusters. Chem. Phys. Lett. 1986, 126, 225–231. [Google Scholar] [CrossRef]
- Bowen, K.H.; Liesegang, G.W.; Sanders, R.A.; Herschbach, D.W. Electron attachment to molecular clusters by collisional charge transfer. J. Phys. Chem. 1983, 87, 557–565. [Google Scholar] [CrossRef]
- Sanche, L.; Schulz, G.J. Electron transmission spectroscopy: Resonances in triatomic molecules and hydrocarbons. J. Chem. Phys. 1973, 58, 479–493. [Google Scholar] [CrossRef]
- Modelli, A.; Jones, D.; Distefano, G. ETS study of the negative ion states of t-butyl and trimethylsilyl derivatives of ethylene and benzene. Chem. Phys. Lett. 1982, 86, 434–437. [Google Scholar] [CrossRef]
- Burrow, P.D.; Michejda, J.A.; Jordan, K.D. Electron transmission study of the temporary negative ion states of selected benzenoid and conjugated aromatic hydrocarbons. J. Chem. Phys. 1987, 86, 9–24. [Google Scholar] [CrossRef]
- Wenthold, P.G.; Polak, M.L.; Lineberger, W.C. Photoelectron spectroscopy of the allyl and 2-methylallyl anions. J. Phys. Chem. 1996, 100, 6920–6926. [Google Scholar] [CrossRef]
- Peerboom, R.A.L.; Rademaker, G.J.; de Koning, L.J.; Nibbering, N.M.M. Stabilization of cycloalkyl carbanions in the gas phase. Rapid Commun. Mass Spectrom. 1992, 6, 394–399. [Google Scholar] [CrossRef]
- Ko, Y.J.; Wang, H.; Pradhan, K.; Koirala, P.; Kandalam, A.K.; Bowen, K.H.; Jena, P. Superhalogen properties of CumCln clusters: Theory and experiment. J. Chem. Phys. 2011, 135, 244312. [Google Scholar] [CrossRef]
- Trainham, R.; Fletcher, G.D.; Larson, D.J. One- and two-photon detachment of the negative chlorine ion. J. Phys. B 1987, 20, L777. [Google Scholar] [CrossRef]
- Leopold, D.G.; Ho, J.; Lineberger, W.C. Photoelectron spectroscopy of mass–selected metal cluster anions. I. Cu−n, n = 1–10. J. Chem. Phys. 1987, 86, 1715–1726. [Google Scholar] [CrossRef]
- Jordon-Thaden, B.; Kreckel, H.; Golser, R.; Schwalm, D.; Berg, M.H.; Buhr, H.; Gnaser, H.; Grieser, M.; Heber, O.; Lange, M.; et al. Structure and stability of the negative hydrogen molecular ion. Phys. Rev. Lett. 2011, 107, 193003. [Google Scholar] [CrossRef]
- Kreckel, H.; Herwig, P.; Schwalm, D.; Čížek, M.; Golser, R.; Heber, O.; Jordon-Thaden, B.; Wolf, A. Metastable states of diatomic hydrogen anions. J. Phys. Conf. Ser. 2014, 488, 012034. [Google Scholar] [CrossRef]
- Golser, R.; Gnaser, H.; Kutschera, W.; Priller, A.; Steier, P.; Wallner, A.; Čížek, M.; Horáček, J.; Domcke, W. Experimental and theoretical evidence for long-lived molecular hydrogen anions H2− and D2−. Phys. Rev. Lett. 2005, 94, 223003. [Google Scholar] [CrossRef]
- Heber, O.; Golser, R.; Gnaser, H.; Berkovits, D.; Toker, Y.; Eritt, M.; Rappaport, M.L.; Zajfman, D. Lifetimes of the negative molecular hydrogen ions: H2−, D2−, and HD−. Phys. Rev. A 2006, 73, 060501(R). [Google Scholar] [CrossRef]
- Fischer-Hjalmars, I. Theoretical investigation of the negative hydrogen molecule ion. J. Chem. Phys. 1959, 30, 1099–1100. [Google Scholar] [CrossRef]
- Zhan, C.-G.; Nichols, J.A.; Dixon, D.A. Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: Molecular properties from density functional theory orbital energies. J. Phys. Chem. A 2003, 107, 4184–4195. [Google Scholar] [CrossRef]
- Meunier, M.; Quirke, N.; Binesti, D. The calculation of the electron affinity of atoms and molecules. Mol. Simul. 1999, 23, 109–125. [Google Scholar] [CrossRef]
- McWeeny, R. The electron affinity of H2: A valence bond study. J. Mol. Struct. THEOCHEM 1992, 261, 403–413. [Google Scholar] [CrossRef]
- Sharp, T.E. Potential-energy curves for molecular hydrogen and its ions. At. Data Nucl. Data Tables 1971, 2, 119–169. [Google Scholar] [CrossRef]
- Linder, F.; Schmidt, H. Rotational and vibrational excitation of H2 by slow electron impact. Z. Naturforsch. A 1971, 26, 1603–1617. [Google Scholar] [CrossRef][Green Version]
- Bruna, P.J.; Lushington, G.H.; Grein, F. Electron-spin g-factors of H2−. An ab initio study. Chem. Phys. Lett. 1996, 258, 427–430. [Google Scholar] [CrossRef]
- Moiseiwitsch, B.L. Electron Affinities of Atoms and Molecules. Adv. At. Mol. Phys. 1965, 1, 61–83. [Google Scholar] [CrossRef]
- Nieto, P.; Pijper, E.; Barredo, D.; Laurent, G.; Olsen, R.A.; Baerends, E.-J.; Kroes, G.-J.; Farías, D. Reactive and nonreactive scattering of H2 from a metal surface is electronically adiabatic. Science 2006, 312, 86–89. [Google Scholar] [CrossRef]
- Kroes, G.-J.; Díaz, C. Quantum and classical dynamics of reactive scattering of H2 from metal surfaces. Chem. Soc. Rev. 2015, 45, 3658–3700. [Google Scholar] [CrossRef]
- Deleuze, M.S.; Delhalle, J. Outer-valence green’s function study of cycloalkane and cycloalkyl−alkane compounds. J. Phys. Chem. A 2001, 105, 6695–6702. [Google Scholar] [CrossRef]
- Jung, J.M. On the photoionisation of liquid cyclohexane, 2,2,4 trimethylpentane and tetramethylsilane. Chem. Phys. Lett. 2003, 380, 190–195. [Google Scholar] [CrossRef]
- Jung, J.M.; Gress, H. Single-photon absorption of liquid cyclohexane, 2,2,4 trimethylpentane and tetramethylsilane in the vacuum ultraviolet. Chem. Phys. Lett. 2003, 377, 495–500. [Google Scholar] [CrossRef]
- Shang, Q.Y.; Bernstein, E.R. (σ3s) Rydberg states of cyclohexane, bicyclo[2.2.2]octane, and adamantane. J. Chem. Phys. 1994, 100, 8625–8632. [Google Scholar] [CrossRef][Green Version]
- Tian, Z.; Fattahi, A.; Lis, L.; Kass, S.R. Cycloalkane and Cycloalkene C-H Bond Dissociation Energies. J. Am. Chem. Soc. 2006, 128, 17087–17092. [Google Scholar] [CrossRef]
- Hölsch, N.; Beyer, M.; Salumbides, E.J.; Eikema, K.S.E.; Ubachs, W.; Jungen, C.; Merkt, F. Benchmarking theory with an improved measurement of the ionization and dissociation energies of H2. Phys. Rev. Lett. 2019, 122, 103002. [Google Scholar] [CrossRef]
- Iwasaki, M.; Toriyama, K.; Nunome, K. Electron spin resonance studies of structures and reactions of radical cations of a series of cycloalkanes in low-temperature matrices. Faraday Disc. Chem. Soc. 1984, 78, 19–33. [Google Scholar] [CrossRef]
- Wojnárovits, L. Energy transfer from excited cyclohexane aromatic solutes. J. Photochem. 1984, 24, 341–353. [Google Scholar] [CrossRef]
- Wojnarovits, L. Photochemistry and Radiation Chemistry of Liquid Alkanes: Formation and Decay of Low-Energy Excited States. In Charged Particle and Photon Interactions with Matter: Chemical, Physicochemical, and Biological Consequences with Applications; Mozumder, A., Hatano, Y., Eds.; Marcel Dekker: New York, NY, USA, 2004; Chapter 13; pp. 365–402. ISBN 0-8247-4623-6. [Google Scholar]
- Ausloos, P.; Rebbert, R.E.; Schwarz, F.P.; Lias, S.G. Pulse- and gamma ray-radiolysis of cyclohexane: Ion recombination mechanisms. Radiat. Phys. Chem. (1977) 1983, 21, 27–43. [Google Scholar] [CrossRef]
- Hirayama, F.; Lipsky, S. Fluorescence of saturated hydrocarbons. J. Chem. Phys. 1969, 51, 3616–3617. [Google Scholar] [CrossRef]
- Tewari, P.H.; Freeman, G.R. Dependence of radiation-induced conductance of liquid hydrocarbons on molecular structure. J. Chem. Phys. 1968, 49, 4394–4399. [Google Scholar] [CrossRef]
- Schmidt, W.F. Electrons in nonpolar dielectric liquids. IEEE Transact. Electr. Insul. 1991, 26, 560–567. [Google Scholar] [CrossRef]
- Schmidt, W.F.; Illenberger, E. Low energy electrons in non-polar liquids. Nukleonika 2003, 48, 75–82. Available online: https://scholar.google.com/scholar?hl=ru&as_sdt=0%2C5&q=78.%09Schmidt%2C+W.F.%3B+Illenberger%2C+E.+Low+energy+electrons+in+non-polar+liquids.+Nukleonika+2003%2C+48%2C+75%E2%88%9282.&btnG= (accessed on 27 January 2024).
- Casanovas, J.; Grob, R.; Delacroix, D.; Guelfucci, J.P.; Blanc, D. Photoconductivity studies in some nonpolar liquids. J. Chem. Phys. 1981, 75, 4661–4668. [Google Scholar] [CrossRef]
- Seki, K.; Inokuchi, H. The ultraviolet photoelectron spectroscopy of aliphatic hydrocarbons and tetramethylsilane in the solid state. Bull. Chem. Soc. Jpn. 1983, 56, 2212–2219. [Google Scholar] [CrossRef]
- Blachford, J.; Dyne, P.J. Vapor-phase radiolysis of cyclohexane and mixtures of benzene and cyclohexane. Can. J. Chem. 1964, 42, 1165–1173. [Google Scholar] [CrossRef]
- Wojnárovits, L.; Földiak, G. Influence of cyclic structure on the radiolysis of hydrocarbons. II. Radiolysis of alkylcyclopentanes and alkylcyclohexanes. Acta Chim. Acad. Sci. Hung. 1974, 82, 285–303. Available online: https://inis.iaea.org/records/1yrck-cjb36 (accessed on 27 January 2024).
- Theard, L.M. Effects of Additives on the Radiolysis of Cyclohexane Vapor at 100°. J. Phys. Chem. 1965, 69, 3292–3298. [Google Scholar] [CrossRef]
- Bouillot, M.S. Sur la radiolyse du cyclohexane en phase solide. Int. J. Radiat. Phys. Chem. 1970, 2, 117–118. [Google Scholar] [CrossRef]
- Shchapin, I.Y.; Nekhaev, A.I. The boundary between two modes of gas evolution: Oscillatory (H2 and O2) and conventional redox (O2 only), in the hydrocarbon/H2O2/Cu(II)/CH3CN system. Hydrogen 2023, 4, 74–102. [Google Scholar] [CrossRef]





| Formula | No. | AIP, eV | E (Mol or Radical) | E (RC or Cation) | ||
|---|---|---|---|---|---|---|
| Exp. | DFT | DFT’ | ||||
| c-C6H12 | 1 | 9.88 ± 0.02 [14] | 9.66 | 9.81 | −235.671105366798 | −235.316052419430 |
| H2 | 2 | 15.43 ** [28,29] | 15.22 | 15.30 | −1.168486584480 | −0.609131622748 |
| CO2 | 3 | 13.778 ± 0.002 [30] | 13.73 | 13.83 | −188.466575767139 | −187.962068024449 |
| Cl2 | 4 | 11.481 ± 0.003 [31] | 11.34 | 11.47 | −920.085323334828 | −919.668654767299 |
| C6H6 | 5 | 9.24 *** [32,33] | 9.13 | 9.29 | −232.047538110431 | −231.712153897878 |
| c-C6H10 | 6 | 8.94 ± 0.01 [14,34] | 8.6 | 8.76 | −234.442623563656 | −234.126538720488 |
| CH2CHCH2• | 7 | 8.13 ± 0.02 [35] | 8.13 | 8.30 | −117.153855236725 | −116.855265113306 |
| c-C6H11• | 8 | 7.15 ± 0.04 [36] | 6.98 | 7.16 | −235.008340307973 | −234.751829087788 |
| C9H18NO• | 9 | 6.73 [37] | 6.88 | 7.06 | −483.328660873514 | −483.075698854896 |
| Formula | No. | AEA, eV | E (Mol or Radical) | E (RA or Anion) | ||
|---|---|---|---|---|---|---|
| Exp. | DFT | DFT’ | ||||
| c-C6H12 | 1 | −4.11 [21] | −2.43 | −2.13 | −235.671105366798 | −235.581799233619 |
| H2 | 2 | −2.66 ** [38] | −3.39 | −3.08 | −1.168486584480 | −1.043961074553 |
| CO2 | 3 | −0.60 *** [41] | −0.81 | −0.53 | −188.466575767139 | −188.436770199596 |
| Cl2 | 4 | 2.50 ± 0.20 [42] | 2.43 | 2.67 | −920.085323334828 | −920.174678186930 |
| C6H6 | 5 | −1.12 ± 0.03 [43,44,45] | −1.48 | −1.19 | −232.047538110431 | −231.993234723623 |
| c-C6H10 | 6 | −2.13 [21] | −1.86 | −1.57 | −234.442623563656 | −234.374272467846 |
| CH2CHCH2• | 7 | 0.481 ± 0.008 [46] | 0.16 | 0.43 | −117.153855236725 | −117.159654973015 |
| c-C6H11• | 8 | −0.24 ± 0.11 [47] | −0.42 | −0.15 | −235.008340307973 | −234.992920354572 |
| Cu2Cl4 | 10 | 4.6 ± 0.1 [48] | 4.32 | 4.54 | −5120.975980754558 | −5121.134650902112 |
| CuCl2 | 11 | 4.3 ± 0.1 [48] | 4.00 | 4.22 | −2560.458515677480 | −2560.605611152270 |
| Cl | 12 | 3.6127 ± 0.0001 [49] | 3.27 | 3.50 | −459.996618462930 | −460.116771209037 |
| Cu | 13 | 1.235 ± 0.005 [50] | 0.67 | 0.93 | −1640.236451203338 | −1640.261078219124 |
| Reaction No. | ∆E Parameter | Exp. | DFT | DFT’ = A·DFT + B |
|---|---|---|---|---|
| (3″) | ΔE(c-C6H12•−) = -AEA(1) | 2.13 [**] | 2.43 | 2.13 |
| (10) | D(C-H) of c-C6H12•− | – | 2.02 | 1.68 |
| (11) | D(C-H) of c-C6H12•− | – | 2.39 | 2.09 |
| (12) | D(C-H) of c-C6H12 | 4.31 ± 0.05 [69] | 4.40 | 4.31 |
| (13) | D(H-H) of H2 | 4.46 *** [70] | 4.53 | 4.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shchapin, I.Y.; Nekhaev, A.I. Theoretically Estimated Experimental Adiabatic Electron Affinities of Hydrogen and Cyclohexane Molecules. Hydrogen 2025, 6, 115. https://doi.org/10.3390/hydrogen6040115
Shchapin IY, Nekhaev AI. Theoretically Estimated Experimental Adiabatic Electron Affinities of Hydrogen and Cyclohexane Molecules. Hydrogen. 2025; 6(4):115. https://doi.org/10.3390/hydrogen6040115
Chicago/Turabian StyleShchapin, Igor Y., and Andrey I. Nekhaev. 2025. "Theoretically Estimated Experimental Adiabatic Electron Affinities of Hydrogen and Cyclohexane Molecules" Hydrogen 6, no. 4: 115. https://doi.org/10.3390/hydrogen6040115
APA StyleShchapin, I. Y., & Nekhaev, A. I. (2025). Theoretically Estimated Experimental Adiabatic Electron Affinities of Hydrogen and Cyclohexane Molecules. Hydrogen, 6(4), 115. https://doi.org/10.3390/hydrogen6040115

