Effect of Mechanical Processing on First Hydrogenation of Gas-Atomized Ti0.488Fe0.46Mn0.052 Alloy
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Morphology and Crystal Structure
2.3. Alloy Processing
2.4. Hydrogenation Properties
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CR | Cold Rolling |
| BM | Ball Milling |
| CP | Cold Pressing |
| HPT | High-Pressure Torsion |
References
- Bernauer, O.; Halene, C. Properties of metal hydrides for use in industrial applications. J. Less Common Met. 1987, 131, 213–224. [Google Scholar] [CrossRef]
- Sakintuna, B.; Lamari-Darkrim, F.; Hirscher, M. Metal hydride materials for solid hydrogen storage: A review. Int. J. Hydrogen Energy 2007, 32, 1121–1140. [Google Scholar] [CrossRef]
- Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358. [Google Scholar] [CrossRef]
- Zhu, H.Y.; Wu, J.; Wang, Q.D. Reactivation behaviour of TiFe hydride. J. Alloys Compd. 1994, 215, 91–95. [Google Scholar] [CrossRef]
- Haraki, T.; Oishi, K.; Uchida, H.; Miyamoto, Y.; Abe, M.; Kokaji, T.; Uchida, S. Properties of hydrogen absorption by nano-structured FeTi alloys. Int. J. Mater. Res. 2008, 99, 507–512. [Google Scholar] [CrossRef]
- Lanyin, S.; Fangjie, L.; Deyou, B. An advanced TiFe series hydrogen storage material with high hydrogen capacity and easily activated properties. Int. J. Hydrogen Energy 1990, 15, 259–262. [Google Scholar] [CrossRef]
- Zadorozhnyy, V.; Klyamkin, S.; Zadorozhnyy, M.; Bermesheva, O.; Kaloshkin, S. Hydrogen storage nanocrystalline TiFe intermetallic compound: Synthesis by mechanical alloying and compacting. Int. J. Hydrogen Energy 2012, 37, 17131–17136. [Google Scholar] [CrossRef]
- Schober, T. On the activation of FeTi for hydrogen storage. J. Less Common Met. 1983, 89, 63–70. [Google Scholar] [CrossRef]
- Bläsius, A.; Gonster, U. Mössbauer surface studies on Tife hydrogen storage material. Appl. Phys. 1980, 22, 331–332. [Google Scholar] [CrossRef]
- Jai-Young, L.; Park, C.N.; Pyun, S.M. The activation processes and hydriding kinetics of FeTi. J. Less Common Met. 1983, 89, 163–168. [Google Scholar] [CrossRef]
- Reilly, J.J.; Wiswall, R.H. Formation and properties of iron titanium hydride. Inorg. Chem. 1974, 13, 218–222. [Google Scholar] [CrossRef]
- Dematteis, E.; Berti, N.; Cuevas, F.; Latroche, M.; Baricco, M. Substitutional effects in TiFe for hydrogen storage: A comprehensive review. Mater. Adv. 2021, 2, 2524–2560. [Google Scholar] [CrossRef]
- Padhee, S.P.; Roy, A.; Pati, S. Role of Mn-substitution towards the enhanced hydrogen storage performance in FeTi. Int. J. Hydrogen Energy 2022, 47, 9357–9371. [Google Scholar] [CrossRef]
- Modi, P.; Aguey-Zinsou, K.-F. Titanium-iron-manganese (TiFe0.85Mn0.15) alloy for hydrogen storage: Reactivation upon oxidation. Int. J. Hydrogen Energy 2019, 44, 16757–16764. [Google Scholar] [CrossRef]
- Yuan, Z.-M.; Qi, Z.; Zhai, T.-T.; Wang, H.-Z.; Wang, H.-Y.; Zhang, Y.-H. Effects of La substitution on microstructure and hydrogen storage properties of Ti–Fe–Mn-based alloy prepared through melt spinning. Trans. Nonferrous Met. Soc. China 2021, 31, 3087–3095. [Google Scholar] [CrossRef]
- Dematteis, E.M.; Dreistadt, D.M.; Capurso, G.; Jepsen, J.; Cuevas, F.; Latroche, M. Fundamental hydrogen storage properties of TiFe-alloy with partial substitution of Fe by Ti and Mn. J. Alloys Compd. 2021, 874, 159925. [Google Scholar] [CrossRef]
- Jung, J.Y.; Lee, S.-I.; Faisal, M.; Kim, H.; Lee, Y.-S.; Suh, J.-Y.; Shim, J.-H.; Huh, J.-Y.; Cho, Y.W. Effect of Cr addition on room temperature hydrogenation of TiFe alloys. Int. J. Hydrogen Energy 2021, 46, 19478–19485. [Google Scholar] [CrossRef]
- Park, K.B.; Ko, W.-S.; Fadonougbo, J.O.; Na, T.-W.; Im, H.-T.; Park, J.-Y.; Kang, J.-W.; Kang, H.-S.; Park, C.-S.; Park, H.-K. Effect of Fe substitution by Mn and Cr on first hydrogenation kinetics of air-exposed TiFe-based hydrogen storage alloy. Mater. Charact. 2021, 178, 111246. [Google Scholar] [CrossRef]
- Komedera, K.; Michalik, J.; Sworst, K.; Gondek, Ł. Structure, Microstructure and Hyperfine Interactions in Hf- and Ni-Substituted TiFe Alloy for Hydrogen Storage. Acta Phys. Pol. A 2024, 146, 215–221. [Google Scholar] [CrossRef]
- Sun, H.; Yan, Z.; Han, Z.; Li, J.; Zhai, T.; Yuan, Z.; Li, T.; Xu, J.; Zhang, Y. Hydrogen storage properties of TiFe-based composite with Ni addition. Heliyon 2024, 10, e41022. [Google Scholar] [CrossRef]
- Chung, H.S.; Lee, J.Y. Effect of partial substitution of Mn and Ni for Fe in FeTi on hydriding kinetics. Int. J. Hydrogen Energy 1986, 11, 335–339. [Google Scholar] [CrossRef]
- Fruchart, D.; Commandré, M.; Sauvage, D.; Rouault, A.; Tellgren, R. Structural and activation process studies of Fe Ti-like hydride compounds. J. Less Common Met. 1980, 74, 55–63. [Google Scholar] [CrossRef]
- Lv, P.; Liu, Z.; Dixit, V. Improved hydrogen storage properties of TiFe alloy by doping (Zr+2V) additive and using mechanical deformation. Int. J. Hydrogen Energy 2019, 44, 27843–27852. [Google Scholar] [CrossRef]
- Manna, J.; Tougas, B.; Huot, J. Mechanical activation of air exposed TiFe + 4 wt% Zr alloy for hydrogenation by cold rolling and ball milling. Int. J. Hydrogen Energy 2018, 43, 20795–20800. [Google Scholar] [CrossRef]
- Li, C.; Gao, X.; Liu, B.; Wei, X.; Zhang, W.; Lan, Y.; Wang, H.; Yuan, Z. Effects of Zr doping on activation capability and hydrogen storage performances of TiFe-based alloy. Int. J. Hydrogen Energy 2023, 48, 2256–2270. [Google Scholar] [CrossRef]
- Patel, A.K.; Sharma, P.; Huot, J. Effect of annealing on microstructure and hydrogenation properties of TiFe + X wt% Zr (X = 4, 8). Int. J. Hydrogen Energy 2018, 43, 6238–6243. [Google Scholar] [CrossRef]
- Patel, A.; Huot, J.; Sharma, P. Hydrogen storage properties of TiFe + X wt.% Zr, V (X = 0, 4) alloys. In Proceedings of the 2016 Canadian Association of Physicists (CAP) Congress, Ottawa, ON, Canada, 13–17 June 2016. [Google Scholar] [CrossRef]
- Jain, P.; Gosselin, C.; Huot, J. Effect of Zr, Ni and Zr7Ni10 alloy on hydrogen storage characteristics of TiFe alloy. Int. J. Hydrogen Energy 2015, 40, 16921–16927. [Google Scholar] [CrossRef]
- Ulate-Kolitsky, E.; Tougas, B.; Neumann, B.; Schade, C.; Huot, J. First hydrogenation of mechanically processed TiFe-based alloy synthesized by gas atomization. Int. J. Hydrogen Energy 2021, 46, 7381–7389. [Google Scholar] [CrossRef]
- Vega, L.; Leiva, D.; Neto, R.L.; Silva, W.; Silva, R.; Ishikawa, T.; Kiminami, C.; Botta, W. Mechanical activation of TiFe for hydrogen storage by cold rolling under inert atmosphere. Int. J. Hydrogen Energy 2018, 43, 2913–2918. [Google Scholar] [CrossRef]
- Oliveira, V.B.; Beatrice, C.A.G.; Leal, R.M.; Silva, W.B.; Pessan, L.A.; Botta, W.J.; Leiva, D.R. Hydrogen absorption/desorption behavior of a cold-rolled TiFe intermetallic compound. Mater. Res. 2021, 24, e20210204. [Google Scholar] [CrossRef]
- Emami, H.; Edalati, K.; Matsuda, J.; Akiba, E.; Horita, Z. Hydrogen storage performance of TiFe after processing by ball milling. Acta Mater. 2015, 88, 190–195. [Google Scholar] [CrossRef]
- Vega, L.E.R.; Leiva, D.R.; Leal Neto, R.M.; Silva, W.B.; Silva, R.A.; Ishikawa, T.T.; Kiminami, C.S.; Botta, W.J. Improved ball milling method for the synthesis of nanocrystalline TiFe compound ready to absorb hydrogen. Int. J. Hydrogen Energy 2020, 45, 2084–2093. [Google Scholar] [CrossRef]
- Abe, M.; Kuji, T. Hydrogen absorption of TiFe alloy synthesized by ball milling and post-annealing. J. Alloys Compd. 2007, 446–447, 200–203. [Google Scholar] [CrossRef]
- Tajima, I.; Abe, M.; Uchida, H.; Hattori, M.; Miyamoto, Y.; Haraki, T. Hydrogen sorption kinetics of FeTi alloy with nano-structured surface layers. J. Alloys Compd. 2013, 580, S33–S35. [Google Scholar] [CrossRef]
- Edalati, K.; Matsuda, J.; Arita, M.; Daio, T.; Akiba, E.; Horita, Z. Mechanism of activation of TiFe intermetallics for hydrogen storage by severe plastic deformation using high-pressure torsion. Appl. Phys. Lett. 2013, 103, 143902. [Google Scholar] [CrossRef]
- Gómez, E.I.L.; Edalati, K.; Antiqueira, F.J.; Coimbrão, D.D.; Zepon, G.; Leiva, D.R.; Ishikawa, T.T.; Cubero-Sesin, J.M.; Botta, W.J. Synthesis of Nanostructured TiFe Hydrogen Storage Material by Mechanical Alloying via High-Pressure Torsion. Adv. Eng. Mater. 2020, 22, 2000011. [Google Scholar] [CrossRef]
- Shang, H.; Li, Y.; Li, C.; Hu, D.; Yang, G.; Li, J.; Zhang, Y.; Zhang, Y. Activation, modification and application of TiFe-based hydrogen storage alloys. Int. J. Hydrogen Energy 2024, 96, 274–299. [Google Scholar] [CrossRef]
- Chiang, C.H.; Chin, Z.H.; Perng, T.P. Hydrogenation of TiFe by high-energy ball milling. J. Alloys Compd. 2000, 307, 259–265. [Google Scholar] [CrossRef]
- Patel, A.K.; Tougas, B.; Sharma, P.; Huot, J. Effect of cooling rate on the microstructure and hydrogen storage properties of TiFe with 4 wt% Zr as an additive. J. Mater. Res. Technol. 2019, 8, 5623–5630. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Ha, T.; Suh, J.-Y.; Kim, D.-I.; Lee, Y.-S.; Shim, J.-H. Orientation relationship between TiFeH and TiFe phases in AB-type Ti–Fe–V–Ce hydrogen storage alloy. J. Alloys Compd. 2024, 983, 173943. [Google Scholar] [CrossRef]
- Edalati, K.; Matsuo, M.; Emami, H.; Itano, S.; Alhamidi, A.; Staykov, A.; Smith, D.J.; Orimo, S.-I.; Akiba, E.; Horita, Z. Impact of severe plastic deformation on microstructure and hydrogen storage of titanium-iron-manganese intermetallics. Scr. Mater. 2016, 124, 108–111. [Google Scholar] [CrossRef]
- Lv, P.; Guzik, M.N.; Sartori, S.; Huot, J. Effect of ball milling and cryomilling on the microstructure and first hydrogenation properties of TiFe+4wt.% Zr alloy. J. Mater. Res. Technol. 2019, 8, 1828–1834. [Google Scholar] [CrossRef]
- Gubicza, J. (Ed.) Chapter 11—Relationship Between Microstructure and Hydrogen Storage Properties of Nanomaterials. In Defect Structure and Properties of Nanomaterials, 2nd ed.; Woodhead Publishing: Cambridge, UK, 2017; pp. 297–315. [Google Scholar] [CrossRef]
- Sleiman, S.; Aliouat, A.; Huot, J. Enhancement of First Hydrogenation of Ti1V0.9Cr1.1 BCC Alloy by Cold Rolling and Ball Milling. Materials 2020, 13, 3106. [Google Scholar] [CrossRef] [PubMed]








| Element | Nominal | Bulk | Spectrum 1 (Matrix) | Spectrum 2 (Dark Grey Region) | Spectrum 3 (Black Region) |
|---|---|---|---|---|---|
| Ti | 48.8 | 49.4 (3) | 47.5 (5) | 59.1 (3) | 66.6 (2) |
| Fe | 46 | 45.3 (4) | 48.4 (6) | 34.8 (2) | 26.3 (4) |
| Mn | 5.2 | 5.3 (2) | 4.1 (5) | 6.1 (3) | 7.1 (1) |
| Sample | Lattice Parameter (Å) | Crystallite Size (nm) | Microstrain (%) |
|---|---|---|---|
| As-Atomized | 2.9828 (4) | 44.0 (5) | 0.132 (6) |
| CR5 | 2.9829 (6) | 25.4 (2) | 0.196 (2) |
| BM10 | 2.9838 (7) | 8.6 (6) | 0.302 (3) |
| CP | 2.9822 (9) | 29.6 (4) | 0.142 (2) |
| Sample | Lattice Parameter (Å) | Crystallite Size (nm) | Microstrain (%) |
|---|---|---|---|
| 5CR-Air | 2.9829 (6) | 25.4 (2) | 0.196 (2) |
| 10CR-Air | 2.9839 (5) | 14.3 (5) | 0.213 (7) |
| 20CR-Air | 2.9841 (3) | 12.1 (3) | 0.235 (1) |
| 5CR-Argon | 2.9829 (9) | 25.1 (8) | 0.194 (1) |
| 10CR-Argon | 2.9831(3) | 14.4 (8) | 0.228 (1) |
| 20CR-Argon | 2.9832 (2) | 12.7 (6) | 0.231 (1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosseinigourajoubi, S.; Schade, C.; Huot, J. Effect of Mechanical Processing on First Hydrogenation of Gas-Atomized Ti0.488Fe0.46Mn0.052 Alloy. Hydrogen 2025, 6, 114. https://doi.org/10.3390/hydrogen6040114
Hosseinigourajoubi S, Schade C, Huot J. Effect of Mechanical Processing on First Hydrogenation of Gas-Atomized Ti0.488Fe0.46Mn0.052 Alloy. Hydrogen. 2025; 6(4):114. https://doi.org/10.3390/hydrogen6040114
Chicago/Turabian StyleHosseinigourajoubi, Seyedehfaranak, Chris Schade, and Jacques Huot. 2025. "Effect of Mechanical Processing on First Hydrogenation of Gas-Atomized Ti0.488Fe0.46Mn0.052 Alloy" Hydrogen 6, no. 4: 114. https://doi.org/10.3390/hydrogen6040114
APA StyleHosseinigourajoubi, S., Schade, C., & Huot, J. (2025). Effect of Mechanical Processing on First Hydrogenation of Gas-Atomized Ti0.488Fe0.46Mn0.052 Alloy. Hydrogen, 6(4), 114. https://doi.org/10.3390/hydrogen6040114

