Comprehensive Overview of Current Pleural Drainage Practice: A Tactical Guide for Surgeons and Clinicians
Abstract
1. Introduction
2. Materials and Methods
3. Preprocedural Evaluation and Indication
3.1. Anatomy, Physiology, and Indications
3.2. Access Site, Technique, and Safety
4. Devices Selection
4.1. Tube Size Selection: Matching Indication to Caliber
| Indication | Default Caliber | Alternatives/Notes | Key Evidence |
|---|---|---|---|
| Post-lobectomy | 19–24 Fr single drain | Smaller drains under investigation in trials; consider ≥24 Fr when a higher risk of bloody or highly viscous output is anticipated (e.g., neoadjuvant chemo-immunotherapy, complex resections); omission limited to selected minor resections. | [15,16,40,41,42,43,46,47,48,49,50] |
| PSP/SSP | ≤14 Fr Seldinger catheter | Ambulatory valve or portable digital in selected; avoid immediate high suction after chronic collapse | [12,51,52,53,54,55,56,57,58,59,60,61,62,63,64] |
| Traumatic Htx/HPTX (stable) | 28–32 Fr (traditional) | Protocolized small-bore (≤14–20 Fr) with imaging surveillance and early escalation | [3,57,58,59,60,65,66,67] |
| Empyema/complicated PPE/TPE | Small-bore feasible with image guidance | Thick fibrinopurulent collections are prone to clog small drains; ensure regular flushing and early escalation to rTPA/DNase or VATS if needed. In organized empyema requiring decortication, prefer postoperative larger surgical tubes (≈24–28 Fr). | [61,62,68,69,70] |
| MPE | IPC (ambulatory) or chest tube + talc | Choose by expansion potential, logistics, preference | [47,63,71,72,73] |
| Chylothorax | 19–24 Fr (context dependent) | Early multidisciplinary escalation if high-output | [17,74] |
4.2. Drainage Hardware: Analogue and Digital Systems
4.3. Suction Versus Water-Seal: Physiology Meets Device Behavior
5. Clinical Assessment and Troubleshooting
5.1. Removal Criteria: Volume Thresholds and Airflow-Guided Decisions
5.2. Postoperative Air-Leak Management and Omission Strategies
6. Contraindications: When to Prefer Alternatives
7. Special Pleural Conditions
8. Complications and Mitigation
9. Tactical Bedside Algorithms
10. Future Directions
11. Discussion
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Christopoulou-Aletra, H.; Papavramidou, N. “Empyemas” of the thoracic cavity in the Hippocratic Corpus. Ann. Thorac. Surg. 2008, 85, 1132–1134. [Google Scholar] [CrossRef]
- Heimlich, H.J. Valve drainage of the pleural cavity. Dis. Chest 1968, 53, 282–287. [Google Scholar] [CrossRef]
- Galvagno, S.M., Jr.; Nahmias, J.T.; Young, D.A. Advanced Trauma Life Support® Update 2019: Management and Applications for Adults and Special Populations. Anesthesiol. Clin. 2019, 37, 13–32. [Google Scholar] [CrossRef] [PubMed]
- Chopra, A.; Doelken, P.; Hu, K.; Huggins, J.T.; Judson, M.A. Pressure-Dependent Pneumothorax and Air Leak: Physiology and Clinical Implications. Chest 2023, 164, 796–805. [Google Scholar] [CrossRef] [PubMed]
- Desimonas, N.; Tsiamis, C.; Sgantzos, M. The Innovated “Closed Chest Drainage System” of William Smoult Playfair (1871). Surg. Innov. 2019, 26, 760–762. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.A. Gotthard Bülau and closed water-seal drainage for empyema, 1875-1891. Ann. Thorac. Surg. 1989, 48, 597–599. [Google Scholar] [CrossRef] [PubMed]
- McElnay, P.J.; Lim, E. Modern Techniques to Insert Chest Drains. Thorac. Surg. Clin. 2017, 27, 29–34. [Google Scholar] [CrossRef]
- Hughes, R.K. Thoracic trauma. Ann. Thorac. Surg. 1965, 1, 778–804. [Google Scholar] [CrossRef]
- Aboud, F.C.; Verghese, A.C. Evarts Ambrose Graham, empyema, and the dawn of clinical understanding of negative intrapleural pressure. Clin. Infect. Dis. 2002, 34, 198–203. [Google Scholar] [CrossRef]
- George, R.S.; Papagiannopoulos, K. Advances in chest drain management in thoracic disease. J. Thorac. Dis. 2016, 8 (Suppl. S1), S55–S64. [Google Scholar] [CrossRef]
- Asciak, R.; Addala, D.; Karimjee, J.; Rana, M.S.; Tsikrika, S.; Hassan, M.F.; Mercer, R.M.; Hallifax, R.J.; Wrightson, J.M.; Psallidas, I.; et al. Chest Drain Fall-Out Rate According to Suturing Practices: A Retrospective Direct Comparison. Respiration 2018, 96, 48–51. [Google Scholar] [CrossRef] [PubMed]
- Voisin, F.; Sohier, L.; Rochas, Y.; Kerjouan, M.; Ricordel, C.; Belleguic, C.; Desrues, B.; Jouneau, S. Ambulatory management of large spontaneous pneumothorax with pigtail catheters. Ann. Emerg. Med. 2014, 64, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Venuta, F.; Diso, D.; Anile, M.; Rendina, E.A.; Onorati, I. Chest Tubes: Generalities. Thorac. Surg. Clin. 2017, 27, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, M.; Nakitende, D.; Kimball, D.; Christian, E.; Bailitz, J. Bougie-assisted tube thoracostomy placement: A novel technique. Am. J. Emerg. Med. 2016, 34, 101–102. [Google Scholar] [CrossRef]
- Batchelor, T.J.P.; Rasburn, N.J.; Abdelnour-Berchtold, E.; Brunelli, A.; Cerfolio, R.J.; Gonzalez, M.; Ljungqvist, O.; Petersen, R.H.; Popescu, W.M.; Slinger, P.D.; et al. Guidelines for enhanced recovery after lung surgery: Recommendations of the Enhanced Recovery After Surgery (ERAS®) Society and the European Society of Thoracic Surgeons (ESTS). Eur. J. Cardiothorac. Surg. 2019, 55, 91–115. [Google Scholar] [CrossRef]
- Kent, M.S.; Mitzman, B.; Diaz-Gutierrez, I.; Khullar, O.V.; Fernando, H.C.; Backhus, L.; Brunelli, A.; Cassivi, S.D.; Cerfolio, R.J.; Crabtree, T.D.; et al. The Society of Thoracic Surgeons Expert Consensus Document on the Management of Pleural Drains After Pulmonary Lobectomy: Expert Consensus Document. Ann. Thorac. Surg. 2024, 118, 764–777. [Google Scholar] [CrossRef]
- Sorino, C.; Feller-Kopman, D.; Mei, F.; Mondoni, M.; Agati, S.; Marchetti, G.; Rahman, N.M. Chest Tubes and Pleural Drainage: History and Current Status in Pleural Disease Management. J. Clin. Med. 2024, 13, 6331. [Google Scholar] [CrossRef]
- Long, B.; Lacy, A.J.; Mason, J.; Gottlieb, M. Tube Thoracostomy and Pleural Catheters: A Review for Emergency Clinicians. J. Emerg. Med. 2025, 77, 100–116. [Google Scholar] [CrossRef]
- Laws, D.; Neville, E.; Duffy, J. Pleural Diseases Group, Standards of Care Committee, British Thoracic Society. BTS guidelines for the insertion of a chest drain. Thorax 2003, 58 (Suppl. S2), ii53–ii59. [Google Scholar] [CrossRef]
- Comacchio, G.M.; Marulli, G.; Mendogni, P.; Andriolo, L.G.; Guerrera, F.; Brascia, D.; Russo, M.D.; Parini, S.; Lopez, C.; Tosi, D.; et al. Comparison Between Electronic and Traditional Chest Drainage Systems: A Multicenter Randomized Study. Ann. Thorac. Surg. 2023, 116, 104–109. [Google Scholar] [CrossRef]
- Embalabala, A.; Mitzman, B.; Crabtree, T. Digital pleural versus analog drainage devices for postoperative management of patients after pulmonary resection. Eur. J. Cardiothorac. Surg. 2025, 67 (Suppl. S1), i31–i40. [Google Scholar] [CrossRef] [PubMed]
- Ueda, T.; Takamochi, K.; Hattori, A.; Fukui, M.; Matsunaga, T.; Suzuki, K. Postoperative management using a digital drainage system for massive air leakage after pulmonary resection. Surg. Today 2024, 54, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.S.; Chan, K.W.; Lim, K.; Siu, I.C.H.; Wong, R.H.L.; Wan, I.Y.P. Lower Recurrence Rate After Surgical Treatment for Primary Spontaneous Pneumothorax Using a Digital Chest Drainage System. Innovations 2024, 19, 390–394. [Google Scholar] [CrossRef]
- Qiu, T.; Shen, Y.; Wang, M.Z.; Wang, Y.; Wang, D.; Wang, Z.; Jin, X.; Wei, Y. External suction versus water seal after selective pulmonary resection for lung neoplasm: A systematic review. PLoS ONE 2013, 8, e68087. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Greenhalgh, T.; Peacock, R. Effectiveness and efficiency of search methods in systematic reviews of complex evidence: Audit of primary sources. BMJ 2005, 331, 1064–1065. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ellis, H. The applied anatomy of chest drain insertion. Br. J. Hosp. Med. 2010, 71, M52–M53. [Google Scholar] [CrossRef]
- Aho, J.M.; Ruparel, R.K.; Rowse, P.G.; Brahmbhatt, R.D.; Jenkins, D.; Rivera, M. Tube Thoracostomy: A Structured Review of Case Reports and a Standardized Format for Reporting Complications. World J. Surg. 2015, 39, 2691–2706. [Google Scholar] [CrossRef]
- Menegozzo, C.A.M.; Artifon, E.L.A.; Meyer-Pflug, A.R.; Rocha, M.C.; Utiyama, E.M. Can ultrasound be used as an adjunct for tube thoracostomy? A systematic review of potential application to reduce procedure-related complications. Int. J. Surg. 2019, 68, 85–90. [Google Scholar] [CrossRef]
- Nakitende, D.; Gottlieb, M.; Ruskis, J.; Kimball, D.; Christian, E.; Bailitz, J. Ultrasound for confirmation of thoracostomy tube placement by emergency medicine residents. Trauma 2016, 19, 35–38. [Google Scholar] [CrossRef]
- Porcel, J.M. Chest Tube Drainage of the Pleural Space: A Concise Review for Pulmonologists. Tuberc. Respir. Dis. 2018, 81, 106–115. [Google Scholar] [CrossRef] [PubMed]
- John, M.; Razi, S.; Sainathan, S.; Stavropoulos, C. Is the trocar technique for tube thoracostomy safe in the current era? Interact. Cardiovasc. Thorac. Surg. 2014, 19, 125–128. [Google Scholar] [CrossRef] [PubMed]
- De Cassai, A.; Boscolo, A.; Zarantonello, F.; Piasentini, E.; Di Gregorio, G.; Munari, M.; Persona, P.; Zampirollo, S.; Zatta, M.; Navalesi, P. Serratus anterior plane block for video-assisted thoracoscopic surgery: A meta-analysis of randomised controlled trials. Eur. J. Anaesthesiol. 2021, 38, 106–114. [Google Scholar] [CrossRef]
- Luftig, J.; Mantuani, D.; Herring, A.A.; Dixon, B.; Clattenburg, E.; Nagdev, A. Successful emergency pain control for posterior rib fractures with ultrasound-guided erector spinae plane block. Am. J. Emerg. Med. 2018, 36, 1391–1396. [Google Scholar] [CrossRef]
- Hogg, J.R.; Caccavale, M.; Gillen, B.; McKenzie, G.; Vlaminck, J.; Fleming, C.; Stockland, A.; Friese, J. Tube thoracostomy: A review for the interventional radiologist. Semin. Intervent. Radiol. 2011, 28, 39–47. [Google Scholar] [CrossRef]
- Ringel, Y.; Haberfeld, O.; Kremer, R.; Kroll, E.; Steinberg, R.; Lehavi, A. Intercostal chest drain fixation strength: Comparison of techniques and sutures. BMJ Mil. Health 2021, 167, 248–250. [Google Scholar] [CrossRef]
- Alphonso, N.; Tan, C.; Utley, M.; Cameron, R.; Dussek, J.; Langlazdunski, L.; Treasure, T. A prospective randomized controlled trial of suction versus non-suction to the under-water seal drains following lung resection. Eur. J. Cardiothorac. Surg. 2005, 27, 391–394. [Google Scholar] [CrossRef]
- Patel, I.J.; Rahim, S.; Davidson, J.C.; Hanks, S.E.; Tam, A.L.; Walker, T.G.; Wilkins, L.R.; Sarode, R.; Weinberg, I. Society of Interventional Radiology Consensus Guidelines for the Periprocedural Management of Thrombotic and Bleeding Risk in Patients Undergoing Percutaneous Image-Guided Interventions-Part II: Recommendations: Endorsed by the Canadian Association for Interventional Radiology and the Cardiovascular and Interventional Radiological Society of Europe. J. Vasc. Interv. Radiol. 2019, 30, 1168–1184.e1. [Google Scholar] [CrossRef]
- Fong, C.; Tan, C.W.C.; Tan, D.K.Y.; See, K.C. Safety of Thoracentesis and Tube Thoracostomy in Patients With Uncorrected Coagulopathy: A Systematic Review and Meta-analysis. Chest 2021, 160, 1875–1889. [Google Scholar] [CrossRef]
- Gómez-Caro, A.; Roca, M.J.; Torres, J.; Cascales, P.; Terol, E.; Castañer, J.; Piñero, A.; Parrilla, P. Successful use of a single chest drain postlobectomy instead of two classical drains: A randomized study. Eur. J. Cardiothorac. Surg. 2006, 29, 562–566. [Google Scholar] [CrossRef]
- Okur, E.; Baysungur, V.; Tezel, C.; Sevilgen, G.; Ergene, G.; Gokce, M.; Halezeroglu, S. Comparison of the single or double chest tube applications after pulmonary lobectomies. Eur. J. Cardiothorac. Surg. 2009, 35, 32–36. [Google Scholar] [CrossRef]
- Anderson, D.; Chen, S.A.; Godoy, L.A.; Brown, L.M.; Cooke, D.T. Comprehensive Review of Chest Tube Management: A Review. JAMA Surg. 2022, 157, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Filosso, P.L.; Sandri, A.; Guerrera, F.; Ferraris, A.; Marchisio, F.; Bora, G.; Costardi, L.; Solidoro, P.; Ruffini, E.; Oliaro, A. When size matters: Changing opinion in the management of pleural space-the rise of small-bore pleural catheters. J. Thorac. Dis. 2016, 8, E503–E510. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bjerregaard, L.S.; Jensen, K.; Petersen, R.H.; Hansen, H.J. Early chest tube removal after video-assisted thoracic surgery lobectomy with serous fluid production up to 500 ml/day. Eur. J. Cardiothorac. Surg. 2014, 45, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, H.; Hu, B.; Li, T.; Miao, J.; You, B.; Fu, Y.; Zhang, W. A prospective randomized single-blind control study of volume threshold for chest tube removal following lobectomy. World J. Surg. 2014, 38, 60–67. [Google Scholar] [CrossRef]
- Laven, I.E.W.G.; Daemen, J.H.T.; Janssen, N.; Franssen, A.J.P.M.; Gronenschild, M.H.M.; Hulsewé, K.W.E.; Vissers, Y.L.J.; De Loos, E.R. Risk of Pneumothorax Requiring Pleural Drainage after Drainless VATS Pulmonary Wedge Resection: A Systematic Review and Meta-Analysis. Innov. Technol. Tech. Cardiothorac. Vasc. Surg. 2022, 17, 14–24. [Google Scholar] [CrossRef]
- Rahman, N.M.; Pepperell, J.; Rehal, S.; Saba, T.; Tang, A.; Ali, N.; West, A.; Hettiarachchi, G.; Mukherjee, D.; Samuel, J.; et al. Effect of Opioids vs NSAIDs and Larger vs Smaller Chest Tube Size on Pain Control and Pleurodesis Efficacy Among Patients With Malignant Pleural Effusion: The TIME1 Randomized Clinical Trial. JAMA 2015, 314, 2641–2653, Erratum in JAMA 2016, 315, 707. [Google Scholar] [CrossRef]
- You, J.; Zhang, H.; Li, W.; Dai, N.; Zheng, Z. Single versus double chest drains after pulmonary lobectomy: A systematic review and meta-analysis. World, J. Surg. Oncol. 2020, 18, 175. [Google Scholar] [CrossRef]
- Zhang, X.; Lv, D.; Li, M.; Sun, G.; Liu, C. The single chest tube versus double chest tube application after pulmonary lobectomy: A systematic review and meta-analysis. J. Cancer Res. Ther. 2016, 12, C309–C316. [Google Scholar] [CrossRef]
- Zhou, D.; Deng, X.F.; Liu, Q.X.; Chen, Q.; Min, J.X.; Dai, J.G. Single chest tube drainage is superior to double chest tube drainage after lobectomy: A meta-analysis. J. Cardiothorac. Surg. 2016, 11, 88. [Google Scholar] [CrossRef]
- Chang, S.H.; Kang, Y.N.; Chiu, H.Y.; Chiu, Y.H. A Systematic Review and Meta-Analysis Comparing Pigtail Catheter and Chest Tube as the Initial Treatment for Pneumothorax. Chest 2018, 153, 1201–1212. [Google Scholar] [CrossRef] [PubMed]
- Iepsen, U.W.; Ringbæk, T. Small-bore chest tubes seem to perform better than larger tubes in treatment of spontaneous pneumothorax. Dan. Med. J. 2013, 60, A4644. [Google Scholar] [PubMed]
- Benton, I.J.; Benfield, G.F. Comparison of a large and small-calibre tube drain for managing spontaneous pneumothoraces. Respir. Med. 2009, 103, 1436–1440. [Google Scholar] [CrossRef]
- Roberts, M.E.; Rahman, N.M.; Maskell, N.A.; Bibby, A.C.; Blyth, K.G.; Corcoran, J.P.; Edey, A.; Evison, M.; De Fonseka, D.; Hallifax, R.; et al. British Thoracic Society Guideline for pleural disease. Thorax 2023, 78 (Suppl. S3), s1–s42. [Google Scholar] [CrossRef]
- Brown, S.G.A.; Ball, E.L.; Perrin, K.; Asha, S.E.; Braithwaite, I.; Egerton-Warburton, D.; Jones, P.G.; Keijzers, G.; Kinnear, F.B.; Kwan, B.C.H.; et al. Conservative versus Interventional Treatment for Spontaneous Pneumothorax. N. Engl. J. Med. 2020, 382, 405–415. [Google Scholar] [CrossRef]
- Havelock, T.; Teoh, R.; Laws, D.; Gleeson, F.; BTS Pleural Disease Guideline Group. Pleural procedures and thoracic ultrasound: British Thoracic Society Pleural Disease Guideline 2010. Thorax 2010, 65 (Suppl. S2), ii61–ii76. [Google Scholar] [CrossRef]
- Kulvatunyou, N.; Erickson, L.; Vijayasekaran, A.; Gries, L.; Joseph, B.; Friese, R.F.; O’Keeffe, T.; Tang, A.L.; Wynne, J.L.; Rhee, P. Randomized clinical trial of pigtail catheter versus chest tube in injured patients with uncomplicated traumatic pneumothorax. Br. J. Surg. 2014, 101, 17–22. [Google Scholar] [CrossRef]
- Tanizaki, S.; Maeda, S.; Sera, M.; Nagai, H.; Hayashi, M.; Azuma, H.; Kano, K.; Watanabe, H.; Ishida, H. Small tube thoracostomy (20-22 Fr) in emergent management of chest trauma. Injury 2017, 48, 1884–1887. [Google Scholar] [CrossRef]
- Patel, N.J.; Dultz, L.; Ladhani, H.A.; Cullinane, D.C.; Klein, E.; McNickle, A.G.; Bugaev, N.; Fraser, D.R.; Kartiko, S.; Dodgion, C.; et al. Management of simple and retained hemothorax: A practice management guideline from the Eastern Association for the Surgery of Trauma. Am. J. Surg. 2021, 221, 873–884. [Google Scholar] [CrossRef]
- Rösch, R.M. From diagnosis to therapy: The acute traumatic hemothorax—An orientation for young surgeons. Innov. Surg. Sci. 2024, 8, 221–226. [Google Scholar] [CrossRef]
- Pastoressa, M.; Ma, T.; Panno, N.; Firstenberg, M. Tissue plasminogen activator and pulmozyme for postoperative-retained hemothorax: A safe alternative to postoperative re-exploration. Int. J. Crit. Illn. Inj. Sci. 2017, 7, 122–125. [Google Scholar] [CrossRef] [PubMed]
- Elsheikh, A.; Bhatnagar, M.; Rahman, N.M. Diagnosis and management of pleural infection. Breathe 2023, 19, 230146. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Terra, R.M.; Dela Vega, A.J.M. Treatment of malignant pleural effusion. J. Vis. Surg. 2018, 4, 110. [Google Scholar] [CrossRef]
- Brunelli, A.; Salati, M.; Pompili, C.; Refai, M.; Sabbatini, A. Regulated tailored suction vs regulated seal: A prospective randomized trial on air leak duration. Eur. J. Cardiothorac. Surg. 2013, 43, 899–904. [Google Scholar] [CrossRef]
- Kulvatunyou, N.; Bauman, Z.M.; Zein Edine, S.B.; De Moya, M.; Krause, C.; Mukherjee, K.; Gries, L.; Tang, A.L.; Joseph, B.; Rhee, P. The small (14 Fr) percutaneous catheter (P-CAT) versus large (28-32 Fr) open chest tube for traumatic hemothorax: A multicenter randomized clinical trial. J. Trauma Acute Care Surg. 2021, 91, 809–813. [Google Scholar] [CrossRef]
- Lyons, N.B.; Abdelhamid, M.O.; Collie, B.L.; Ramsey, W.A.; O’Neil, C.F.; Delamater, J.M.; Cobler-Lichter, M.D.; Shagabayeva, L.; Proctor, K.G.; Namias, N.; et al. Small versus large-bore thoracostomy for traumatic hemothorax: A systematic review and meta-analysis. J. Trauma Acute Care Surg. 2024, 97, 631–638. [Google Scholar] [CrossRef]
- Gilbert, R.W.; Fontebasso, A.M.; Park, L.; Tran, A.; Lampron, J. The management of occult hemothorax in adults with thoracic trauma: A systematic review and meta-analysis. J. Trauma Acute Care Surg. 2020, 89, 1225–1232. [Google Scholar] [CrossRef]
- Mei, F.; Rota, M.; Bonifazi, M.; Zuccatosta, L.; Porcarelli, F.M.; Sediari, M.; Bedawi, E.O.; Sundaralingam, A.; Addala, D.; Gasparini, S.; et al. Efficacy of Small versus Large-Bore Chest Drain in Pleural Infection: A Systematic Review and Meta-Analysis. Respiration 2023, 102, 247–256. [Google Scholar] [CrossRef]
- Janowak, C.F.; Becker, B.R.; Philpott, C.D.; Makley, A.T.; Mueller, E.W.; Droege, C.A.; Droege, M.E. Retrospective Evaluation of Intrapleural Tissue Plasminogen Activator With or Without Dornase Alfa for the Treatment of Traumatic Retained Hemothorax: A 6-Year Experience. Ann. Pharmacother. 2022, 56, 1222–1230. [Google Scholar] [CrossRef]
- Xiong, Y.; Gao, X.; Zhu, H.; Ding, C.; Wang, J. Role of medical thoracoscopy in the treatment of tuberculous pleural effusion. J. Thorac. Dis. 2016, 8, 52–60. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Walker, S.P.; Bintcliffe, O.; Keenan, E.; Stadon, L.; Evison, M.; Haris, M.; Nagarajan, T.; West, A.; Ionescu, A.; Prudon, B.; et al. Randomised trial of indwelling pleural catheters for refractory transudative pleural effusions. Eur. Respir. J. 2022, 59, 2101362. [Google Scholar] [CrossRef] [PubMed]
- Dresler, C.M.; Olak, J.; Herndon, J.E.; Richards, W.G.; Scalzetti, E.; Fleishman, S.B.; Kernstine, K.H.; Demmy, T.; Jablons, D.M.; Kohman, L.; et al. Phase III intergroup study of talc poudrage vs talc slurry sclerosis for malignant pleural effusion. Chest 2005, 127, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, R.; Piotrowska, H.E.; Laskawiec-Szkonter, M.; Kahan, B.C.; Luengo-Fernandez, R.; Pepperell, J.C.T.; Evison, M.D.; Holme, J.; Al-Aloul, M.; Psallidas, I.; et al. Effect of Thoracoscopic Talc Poudrage vs Talc Slurry via Chest Tube on Pleurodesis Failure Rate Among Patients With Malignant Pleural Effusions: A Randomized Clinical Trial. JAMA 2020, 323, 60–69. [Google Scholar] [CrossRef]
- Lococo, F.; Sorino, C.; Marchetti, G.; Feller-Kopman, D. Chylothorax Associated with Indolent Follicular Lymphoma. In Pleural Diseases, 1st ed.; Sorino, C., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2021; pp. 59–67. ISBN 9780323795418. [Google Scholar]
- Takamochi, K.; Haruki, T.; Oh, S.; Endo, M.; Funai, K.; Kitamura, Y.; Tsuboi, M.; Tsukioka, T.; Suzuki, H.; Ito, H.; et al. Early chest tube removal regardless of drainage volume after anatomic pulmonary resection: A multicenter, randomized, controlled trial. J. Thorac. Cardiovasc. Surg. 2024, 168, 401–410.e1. [Google Scholar] [CrossRef]
- Motono, N.; Iwai, S.; Funasaki, A.; Sekimura, A.; Usuda, K.; Uramoto, H. What is the allowed volume threshold for chest tube removal after lobectomy: A randomized controlled trial. Ann. Med. Surg. 2019, 43, 29–32. [Google Scholar] [CrossRef]
- Lijkendijk, M.; Licht, P.B.; Neckelmann, K. The Influence of Suction on Chest Drain Duration After Lobectomy Using Electronic Chest Drainage. Ann. Thorac. Surg. 2019, 107, 1621–1625. [Google Scholar] [CrossRef]
- Holbek, B.L.; Christensen, M.; Hansen, H.J.; Kehlet, H.; Petersen, R.H. The effects of low suction on digital drainage devices after lobectomy using video-assisted thoracoscopic surgery: A randomized controlled trial†. Eur. J. Cardiothorac. Surg. 2019, 55, 673–681. [Google Scholar] [CrossRef]
- Marasco, R.D.; Giudice, G.; Lequaglie, C. How to distinguish an active air leak from a pleural space effect. Asian Cardiovasc. Thorac. Ann. 2012, 20, 682–688. [Google Scholar] [CrossRef]
- Gilbert, S.; McGuire, A.L.; Maghera, S.; Sundaresan, S.R.; Seely, A.J.; Maziak, D.E.; Shamji, F.M.; Villeneuve, P.J. Randomized trial of digital versus analog pleural drainage in patients with or without a pulmonary air leak after lung resection. J. Thorac. Cardiovasc. Surg. 2015, 150, 1243–1249. [Google Scholar] [CrossRef]
- Takamochi, K.; Nojiri, S.; Oh, S.; Matsunaga, T.; Imashimizu, K.; Fukui, M.; Suzuki, K. Comparison of digital and traditional thoracic drainage systems for postoperative chest tube management after pulmonary resection: A prospective randomized trial. J. Thorac. Cardiovasc. Surg. 2018, 155, 1834–1840. [Google Scholar] [CrossRef]
- Marshall, M.B.; Deeb, M.E.; Bleier, J.I.; Kucharczuk, J.C.; Friedberg, J.S.; Kaiser, L.R.; Shrager, J.B. Suction vs water seal after pulmonary resection: A randomized prospective study. Chest 2002, 121, 831–835. [Google Scholar] [CrossRef]
- Minervini, F.; Hanna, W.C.; Brunelli, A.; Farrokhyar, F.; Miyazaki, T.; Bertolaccini, L.; Scarci, M.; Coret, M.; Hughes, K.; Schneider, L.; et al. Outcomes of patients discharged home with a chest tube after lung resection: A multicentre cohort study. Can. J. Surg. 2022, 65, E97–E103. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.Y.; Xu, K.; Tang, J.X.; Bian, W.; Ma, H.-T.; Zhao, J.; Ni, B. A prospective randomized, controlled trial deems a drainage of 300 ml/day safe before removal of the last chest drain after video-assisted thoracoscopic surgery lobectomy. Interact. Cardiovasc. Thorac. Surg. 2015, 21, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Mesa-Guzman, M.; Periklis, P.; Niwaz, Z.; Socci, L.; Raubenheimer, H.; Adams, B.; Gurung, L.; Uzzaman, M.; Lim, E. Determining optimal fluid and air leak cut off values for chest drain management in general thoracic surgery. J. Thorac. Dis. 2015, 7, 2053–2057. [Google Scholar] [CrossRef]
- Gioutsos, K.; Ehrenreich, L.; Azenha, L.F.; Quapp, C.S.; Kocher, G.J.; Lutz, J.A.; Peischl, S.; Dorn, P. Randomized Controlled Trial of Thresholds for Drain Removal After Anatomic Lung Resection. Ann. Thorac. Surg. 2024, 117, 1103–1109. [Google Scholar] [CrossRef]
- Beattie, G.; Cohan, C.M.; Chomsky-Higgins, K.; Tang, A.; Senekjian, L.; Victorino, G.P. Is a chest radiograph after thoracostomy tube removal necessary? A cost-effective analysis. Injury 2020, 51, 2493–2499. [Google Scholar] [CrossRef]
- Dugan, K.C.; Laxmanan, B.; Murgu, S.; Hogarth, D.K. Management of Persistent Air Leaks. Chest 2017, 152, 417–423. [Google Scholar] [CrossRef]
- Cerfolio, R.J.; Bryant, A.S. The benefits of continuous and digital air leak assessment after elective pulmonary resection: A prospective study. Ann. Thorac. Surg. 2008, 86, 396–401. [Google Scholar] [CrossRef]
- Holbek, B.L.; Huang, L.; Christensen, T.D.; Bendixen, M.; Hansen, H.J.; Kehlet, H.; Petersen, R.H. Efficacy of avoiding chest drains after video-assisted thoracoscopic surgery wedge resection: Protocol for a randomised controlled trial. BMJ Open 2024, 14, e080573. [Google Scholar] [CrossRef]
- Koppurapu, V.; Meena, N. A review of the management of complex para-pneumonic effusion in adults. J. Thorac. Dis. 2017, 9, 2135–2141. [Google Scholar] [CrossRef]
- Huggins, J.T.; Maldonado, F.; Chopra, A.; Rahman, N.; Light, R. Unexpandable lung from pleural disease. Respirology 2018, 23, 160–167. [Google Scholar] [CrossRef]
- Krok, K.L.; Cárdenas, A. Hepatic hydrothorax. Semin. Respir. Crit. Care Med. 2012, 33, 3–10. [Google Scholar] [CrossRef]
- Oberg, C.L.; Holden, V.K.; Channick, C.L. Benign Central Airway Obstruction. Semin. Respir. Crit. Care Med. 2018, 39, 731–746. [Google Scholar] [CrossRef] [PubMed]
- Staes, W.; Funaki, B. “Ex vacuo” pneumothorax. Semin. Intervent. Radiol. 2009, 26, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Ueda, K.; Hayashi, M.; Tanaka, T.; Hamano, K. Omitting chest tube drainage after thoracoscopic major lung resection. Eur. J. Cardiothorac. Surg. 2013, 44, 225–229. [Google Scholar] [CrossRef]
- Filosso, P.L.; Guerrera, F.; Sandri, A.; Roffinella, M.; Solidoro, P.; Ruffini, E.; Oliaro, A. Errors and Complications in Chest Tube Placement. Thorac. Surg. Clin. 2017, 27, 57–67. [Google Scholar] [CrossRef]
- Gocyk, W.; Kużdżał, J.; Włodarczyk, J.; Grochowski, Z.; Gil, T.; Warmus, J.; Kocoń, P.; Talar, P.; Obarski, P.; Trybalski, Ł. Comparison of Suction Versus Nonsuction Drainage After Lung Resections: A Prospective Randomized Trial. Ann. Thorac. Surg. 2016, 102, 1119–1124. [Google Scholar] [CrossRef]
- Brook, I.; Frazier, E.H. Aerobic and anaerobic microbiology of empyema. A retrospective review in two military hospitals. Chest 1993, 103, 1502–1507. [Google Scholar] [CrossRef]
- Matsuura, Y.; Nomimura, T.; Murakami, H.; Matsushima, T.; Kakehashi, M.; Kajihara, H. Clinical analysis of reexpansion pulmonary edema. Chest 1991, 100, 1562–1566. [Google Scholar] [CrossRef]
- Mahfood, S.; Hix, W.R.; Aaron, B.L.; Blaes, P.; Watson, D.C. Reexpansion pulmonary edema. Ann. Thorac. Surg. 1988, 45, 340–345. [Google Scholar] [CrossRef]
- Lijkendijk, M.; Licht, P.B.; Neckelmann, K. Electronic versus traditional chest tube drainage following lobectomy: A randomized trial. Eur. J. Cardiothorac. Surg. 2015, 48, 893–898. [Google Scholar] [CrossRef]
- Hernandez, M.C.; El Khatib, M.; Prokop, L.; Zielinski, M.D.; Aho, J.M. Complications in tube thoracostomy: Systematic review and meta-analysis. J. Trauma Acute Care Surg. 2018, 85, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Vilkki, V.A.; Gunn, J.M. Complications related to tube thoracostomy in Southwest Finland hospital district between 2004 and 2014. Scand. J Surg. 2020, 109, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Murakami, J.; Ueda, K.; Tanaka, T.; Kobayashi, T.; Kunihiro, Y.; Hamano, K. The Validation of a No-Drain Policy After Thoracoscopic Major Lung Resection. Ann. Thorac. Surg. 2017, 104, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
- Bosman, A.; de Jong, M.B.; Debeij, J.; van den Broek, P.J.; Schipper, I.B. Systematic review and meta-analysis of antibiotic prophylaxis to prevent infections from chest drains in blunt and penetrating thoracic injuries. Br. J. Surg. 2012, 99, 506–513. [Google Scholar] [CrossRef]
- Plourde, M.; Jad, A.; Dorn, P.; Harris, K.; Mujoomdar, A.; Henteleff, H.; French, D.; Bethune, D. Digital Air Leak Monitoring for Lung Resection Patients: A Randomized Controlled Clinical Trial. Ann. Thorac. Surg. 2018, 106, 1628–1632. [Google Scholar] [CrossRef]
- Cerfolio, R.J.; Bass, C.; Katholi, C.R. Prospective randomized trial compares suction versus water seal for air leaks. Ann. Thorac. Surg. 2001, 71, 1613–1617. [Google Scholar] [CrossRef]
- Brunelli, A.; Monteverde, M.; Borri, A.; Salati, M.; Marasco, R.D.; Al Refai, M.; Fianchini, A. Comparison of water seal and suction after pulmonary lobectomy: A prospective, randomized trial. Ann. Thorac. Surg. 2004, 77, 1932–1937. [Google Scholar] [CrossRef]
- Yang, H.C.; Drysch, A.; Kurihara, C.; Schraufnagel, D.P.; Kim, S.S.; Bharat, A.; Lung, K.C. Long-term outcomes after pleural decortication for patients with chronic sterile, non-malignant pleural effusion. J. Thorac. Dis. 2025, 17, 7875–7885. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Krumm, I.R.; Gesthalter, Y.B. Perspectives on Periplacement Management of Tunneled Pleural Catheters: A National Survey of Interventional Pulmonologists. J. Bronchol. Interv. Pulmonol. 2025, 33, e1038. [Google Scholar] [CrossRef] [PubMed]
| Element | Specification |
|---|---|
| Eligibility | Hemodynamically stable; no massive Htx; CT/POCUS available |
| Catheter | ≤14–20 Fr Seldinger catheter placed with image guidance when feasible |
| Monitoring | Output charting; repeat CXR/POCUS at 6–24 h |
| Escalation | Fibrinolytics (tPA ± DNase) or VATS for retained clot; convert to large-bore for failure |
| Governance | Multidisciplinary protocol; QA review of outcomes |
| Parameter | Typical Range | Practical Interpretation |
|---|---|---|
| “Seal” setting | ≈ −2 to −8 cm H2O | Low regulated negative pressure, not zero suction [64,77,78] |
| Moderate suction | −10 to −20 cm H2O | Use for larger leaks or suboptimal expansion [64,77,78] |
| Low airflow threshold | ≤20–40 mL/min | Common removal criterion with full expansion [79] |
| High airflow | >100–200 mL/min | Maintain suction; evaluate for PAL/BPF [21] |
| Pathway | Criteria | Notes |
|---|---|---|
| Volume-based | ≤300–500 mL/24 h; non-bloody/non-chylous | Randomized trials and ERAS guidance support upper bound approximately 450–500 mL/day [15,44,45,75,84] |
| Air-leak analogue | No bubbling with cough/respiration | Ensure imaging/clinical expansion [85] |
| Digital airflow | ≤20–40 mL/min sustained 6–12 h | Consider skipping clamp trial when telemetry stable [21,79] |
| Complication | Contributors | Mitigation |
|---|---|---|
| Malposition/extrathoracic placement | Anatomical variation; emergent setting | Ultrasound guidance; safety-triangle entry; superior rib border; confirm position [29,30] |
| Organ/vascular injury | Trocar use; low intercostal spaces | Avoid trocar; above 5th ICS when feasible; image guidance [27,32] |
| Infection | Prolonged dwell; trauma context | Asepsis; stewardship; consider prophylaxis per local data (trauma) [99] |
| Occlusion/clot | High viscosity; small caliber in Htx | Early reassessment; escalation or VATS if retained clot [59,60,67] |
| Dislodgement | Poor fixation; early mobilization | Robust suture/securement; nursing protocols [11,36] |
| Re-expansion pulmonary edema | Rapid suction after chronic collapse | Gradual re-expansion; initially low pressure [100,101,102] |
| Domain | Trial (Year) | Design | Key Finding |
|---|---|---|---|
| Post-resection tubes | Gómez-Caro 2006; Okur 2009 | RCTs | Single drain non-inferior/superior for pain and mobilization [40,41] |
| Removal thresholds | Bjerregaard 2014; Gioutsos 2024; Xie 2015 | RCTs | Safe removal at ≤300–500 mL/day or air-leak-guided [44,84,86] |
| Digital vs. analogue | Comacchio 2023; Lijkendijk 2015; Plourde 2018; | RCTs | Non-inferior; workflow/patient benefits in several trials [20,102,107] |
| Suction vs. seal | Marshall 2002; Cerfolio 2001; Brunelli 2004 | RCTs | No routine benefit of continuous suction; early seal favored [82,108,109] |
| Trauma caliber | Bauman 2021; Lyons 2024 | RCT + Meta-analysis | Small-bore feasible in selected settings with protocols [65,66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrari, P.A.; Salis, C.B.; Pusceddu, E.; Santoru, M.; Canu, G.; Ferrari, A.; Fois, A.G.; Maccio, A. Comprehensive Overview of Current Pleural Drainage Practice: A Tactical Guide for Surgeons and Clinicians. Surgeries 2025, 6, 108. https://doi.org/10.3390/surgeries6040108
Ferrari PA, Salis CB, Pusceddu E, Santoru M, Canu G, Ferrari A, Fois AG, Maccio A. Comprehensive Overview of Current Pleural Drainage Practice: A Tactical Guide for Surgeons and Clinicians. Surgeries. 2025; 6(4):108. https://doi.org/10.3390/surgeries6040108
Chicago/Turabian StyleFerrari, Paolo Albino, Cosimo Bruno Salis, Elisabetta Pusceddu, Massimiliano Santoru, Gianluca Canu, Antonio Ferrari, Alessandro Giuseppe Fois, and Antonio Maccio. 2025. "Comprehensive Overview of Current Pleural Drainage Practice: A Tactical Guide for Surgeons and Clinicians" Surgeries 6, no. 4: 108. https://doi.org/10.3390/surgeries6040108
APA StyleFerrari, P. A., Salis, C. B., Pusceddu, E., Santoru, M., Canu, G., Ferrari, A., Fois, A. G., & Maccio, A. (2025). Comprehensive Overview of Current Pleural Drainage Practice: A Tactical Guide for Surgeons and Clinicians. Surgeries, 6(4), 108. https://doi.org/10.3390/surgeries6040108

