Synthesis of an Electrodeficient Dipyridylbenzene-like Terdentate Ligand: Cyclometallating Ligand for Highly Emitting Iridium(III) and Platinum(II) Complexes
Abstract
1. Introduction
2. Materials and Methods
2.1. General Consideration
2.2. Absorption and Emission Spectroscopies
2.3. Experimental Procedures
3. Results
3.1. Synthesis
3.2. Characterisation
3.3. X-ray Single Crystal Diffraction
3.4. Absorption and Emission Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, T.-Y.; Wu, J.; Wu, Z.-G.; Zheng, Y.-X.; Zuo, J.-L.; Pan, Y. Rational Design of Phosphorescent Iridium(III) Complexes for Emission Color Tunability and Their Applications in OLEDs. Coord. Chem. Rev. 2018, 374, 55–92. [Google Scholar] [CrossRef]
- Pashaei, B.; Karimi, S.; Shahroosvand, H.; Abbasi, P.; Pilkington, M.; Bartolotta, A.; Fresta, E.; Fernandez-Cestau, J.; Costa, R.D.; Bonaccorso, F. Polypyridyl Ligands as a Versatile Platform for Solid-State Light-Emitting Devices. Chem. Soc. Rev. 2019, 48, 5033–5139. [Google Scholar] [CrossRef] [PubMed]
- Shon, J.H.; Teets, T.S. Molecular Photosensitizers in Energy Research and Catalysis: Design Principles and Recent Developments. ACS Energy Lett. 2019, 4, 558–566. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, L.; Li, F.; Yu, M.; Liu, Z.; Yi, T.; Huang, C. Aggregation-Induced Phosphorescent Emission (AIPE) of Iridium(Iii) Complexes. Chem. Commun. 2008, 3, 685–687. [Google Scholar] [CrossRef] [PubMed]
- Solomatina, A.I.; Slobodina, A.D.; Ryabova, E.V.; Bolshakova, O.I.; Chelushkin, P.S.; Sarantseva, S.V.; Tunik, S.P. Blood-Brain Barrier Penetrating Luminescent Conjugates Based on Cyclometalated Platinum(II) Complexes. Bioconjug. Chem. 2020, 31, 2628–2637. [Google Scholar] [CrossRef]
- Costa, R.D.; Ortí, E.; Bolink, H.J.; Graber, S.; Schaffner, S.; Neuburger, M.; Housecroft, C.E.; Constable, E.C. Archetype Cationic Iridium Complexes and Their Use in Solid-State Light-Emitting Electrochemical Cells. Adv. Funct. Mater. 2009, 19, 3456–3463. [Google Scholar] [CrossRef]
- Meier, S.B.; Tordera, D.; Pertegàs, A.; Roldàn-Carmona, C.; Ortì, E.; Bolink, H.J. Light-Emitting Electrochemical Cells: Recent Progress and Future Prospects. Mater. Today 2014, 17, 217–223. [Google Scholar] [CrossRef]
- Salehi, A.; Fu, X.; Shin, D.-H.; So, F. Recent Advances in OLED Optical Design. Adv. Funct. Mater. 2019, 29, 1808803. [Google Scholar] [CrossRef]
- Zhao, J.H.; Hu, Y.X.; Lu, H.Y.; Lü, Y.L.; Li, X. Progress on Benzimidazole-Based Iridium(III) Complexes for Application in Phosphorescent OLEDs. Org. Electron. 2017, 41, 56–72. [Google Scholar] [CrossRef]
- Choy, W.C.H.; Chan, W.K.; Yuan, Y. Recent Advances in Transition Metal Complexes and Light-Management Engineering in Organic Optoelectronic Devices. Adv. Mater. 2014, 26, 5368–5399. [Google Scholar] [CrossRef]
- Lo, K.K.-W. Luminescent Rhenium(I) and Iridium(III) Polypyridine Complexes as Biological Probes, Imaging Reagents, and Photocytotoxic Agents. Acc. Chem. Res. 2015, 48, 2985–2995. [Google Scholar] [CrossRef]
- Yuan, Y.J.; Yu, Z.T.; Chen, D.Q.; Zou, Z.G. Metal-Complex Chromophores for Solar Hydrogen Generation. Chem. Soc. Rev. 2017, 46, 603–631. [Google Scholar] [CrossRef]
- Prier, C.K.; Rankic, D.A.; MacMillan, D.W.C. Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chem. Rev. 2013, 113, 5322–5363. [Google Scholar] [CrossRef]
- Silvestroni, L.; Accorsi, G.; Armaroli, N.; Balzani, V.; Bergamini, G.; Campagna, S.; Cardinali, F.; Chiorboli, C.; Indelli, M.T.; Kane-Maguire, N.A.P.; et al. Photochemistry and Photophysics of Coordination Compounds I; Balzani, V., Campagna, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 281, ISBN 9783642255281. [Google Scholar]
- Barbieri, A.; Barigelletti, F.; Cheng, E.C.-C.; Flamigni, L.; Gunnlaugsson, T.; Kirgan, R.A.G.; Kumaresan, D.; Leonard, J.P.; Nolan, C.B.; Rillema, D.P.; et al. Photochemistry and Photophysics of Coordiantion Compounds II; Topics in current Chemistry; Campagna, S., Balzani, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 3-540-08986-1. [Google Scholar]
- Volman, D.H.; Hammond, G.S.; Neckers, D.C.; Maestri, M.; Balzani, V.; Deuschel-Cornioley, C.; Von Zelewsky, A. Photochemistry and Luminescence of Cyclometalated Complexes. Adv. Photochem. 1992, 17. [Google Scholar] [CrossRef]
- Gildea, L.F.; Williams, J.A.G. Iridium and Platinum Complexes for OLEDs. In Organic Light-Emitting Diodes (OLEDs); Buckley, A., Ed.; Woodhead Publishing: Sawston, UK, 2013; pp. 77–113. ISBN 978-0-85709-425-4. [Google Scholar]
- Zanoni, K.P.S.; Coppo, R.L.; Amaral, R.C.; Murakami Iha, N.Y. Ir(III) Complexes Designed for Light-Emitting Devices: Beyond the Luminescence Color Array. Dalton Trans. 2015, 44, 14559–14573. [Google Scholar] [CrossRef] [PubMed]
- Housecroft, C.E.; Constable, E.C. Over the LEC Rainbow: Colour and Stability Tuning of Cyclometallated Iridium(III) Complexes in Light-Emitting Electrochemical Cells. Coord. Chem. Rev. 2017, 350, 155–177. [Google Scholar] [CrossRef]
- Kalinowski, J.; Fattori, V.; Cocchi, M.; Williams, J.A.G. Light-Emitting Devices Based on Organometallic Platinum Complexes as Emitters; Le Bozec, H., Guerchais, V., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2011; Volume 255. [Google Scholar]
- Baranoff, E.; Yum, J.-H.; Jung, I.; Vulcano, R.; Grätzel, M.; Nazeeruddin, M.K. Cyclometallated Iridium Complexes as Sensitizers for Dye-Sensitized Solar Cells. Chem. Asian J. 2010, 5, 496–499. [Google Scholar] [CrossRef]
- Guo, H.; Ji, S.; Wu, W.W.; Shao, J.; Zhao, J. Long-Lived Emissive Intra-Ligand Triplet Excited States (3IL): Next Generation Luminescent Oxygen Sensing Scheme and a Case Study with Red Phosphorescent Diimine Pt(II) Bis(Acetylide) Complexes Containing Ethynylated Naphthalimide or Pyrene Subunits. Analyst 2010, 135, 2832–2840. [Google Scholar] [CrossRef]
- Medina-Rodríguez, S.; Denisov, S.A.; Cudré, Y.; Male, L.; Marín-Suárez, M.; Fernández-Gutiérrez, A.; Fernández-Sánchez, J.F.; Tron, A.; Jonusauskas, G.; McClenaghan, N.D.; et al. High Performance Optical Oxygen Sensors Based on Iridium Complexes Exhibiting Interchromophore Energy Shuttling. Analyst 2016, 141, 3090–3097. [Google Scholar] [CrossRef]
- Lanoë, P.-H.; Le Bozec, H.; Williams, J.A.G.; Fillaut, J.-L.; Guerchais, V. Cyclometallated Platinum(II) Complexes Containing Pyridyl-Acetylide Ligands: The Selective Influence of Lead Binding on Luminescence. Dalton Trans. 2010, 39, 707–710. [Google Scholar] [CrossRef]
- Lanoë, P.-H.; Fillaut, J.-L.; Toupet, L.; Williams, J.A.G.; Le Bozec, H.; Guerchais, V. Cyclometallated Platinum(II) Complexes Incorporating Ethynyl-Flavone Ligands: Switching between Triplet and Singlet Emission Induced by Selective Binding of Pb2+ Ions. Chem. Commun. 2008, 4333–4335. [Google Scholar] [CrossRef] [PubMed]
- Lanoë, P.-H.; Fillaut, J.-L.; Guerchais, V.; Le Bozec, H.; Williams, J.a.G. Metal Cation Induced Modulation of the Photophysical Properties of a Platinum(II) Complex Featuring a Dipicolylanilino–Acetylide Ligand. Eur. J. Inorg. Chem. 2011, 2011, 1255–1259. [Google Scholar] [CrossRef]
- Ortega-Forte, E.; Hernández-García, S.; Vigueras, G.; Henarejos-Escudero, P.; Cutillas, N.; Ruiz, J.; Gandía-Herrero, F. Potent Anticancer Activity of a Novel Iridium Metallodrug via Oncosis. Cell. Mol. Life Sci. 2022, 79, 510. [Google Scholar] [CrossRef]
- Shen, J.; Rees, T.W.; Ji, L.; Chao, H. Recent Advances in Ruthenium(II) and Iridium(III) Complexes Containing Nanosystems for Cancer Treatment and Bioimaging. Coord. Chem. Rev. 2021, 443, 214016. [Google Scholar] [CrossRef]
- Caporale, C.; Massi, M. Cyclometalated Iridium(III) Complexes for Life Science. Coord. Chem. Rev. 2018, 363, 71–91. [Google Scholar] [CrossRef]
- Chung, C.Y.-S.; Yam, V.W.-W. Induced Self-Assembly of Platinum(II) Alkynyl Complexes through Specific Interactions between Citrate and Guanidinium for Proof-of-Principle Detection of Citrate and an Assay of Citrate Lyase. Chemistry 2014, 20, 13016–13027. [Google Scholar] [CrossRef]
- Tu, T.; Fang, W.; Bao, X.; Li, X.; Dötz, K.H. Visual Chiral Recognition through Enantioselective Metallogel Collapsing: Synthesis, Characterization, and Application of Platinum-Steroid Low-Molecular-Mass Gelators. Angew. Chem. Int. Ed. 2011, 50, 6601–6605. [Google Scholar] [CrossRef]
- Li, K.; Zou, T.; Chen, Y.; Guan, X.; Che, C. Pincer-Type Platinum(II) Complexes Containing N-Heterocyclic Carbene (NHC) Ligand: Structures, Photophysical and Anion-Binding Properties, and Anticancer Activities. Chem. Eur.J. 2015, 21, 7441–7453. [Google Scholar] [CrossRef]
- Di Bella, C.S.; Dragonetti, M.; Pizzotti, D.; Roberto, F.; Tessore, R.; Ugo, M.G.; Humphrey, M.P.; Cifuentes, M.; Samoc, L.; Murphy, J.A.G.; et al. Molecular Organometallic Materials for Optics. Top. Organomet. Chem. 2010, 37, 179. [Google Scholar] [CrossRef]
- Rausch, A.F.; Murphy, L.; Williams, J.A.G.; Yersin, H. Improving the Performance of Pt(II) Complexes for Blue Light Emission by Enhancing the Molecular Rigidity. Inorg. Chem. 2012, 51, 312–319. [Google Scholar] [CrossRef]
- Congrave, D.G.; Hsu, Y.-T.; Batsanov, A.S.; Beeby, A.; Bryce, M.R. Sky-Blue Emitting Bridged Diiridium Complexes: Beneficial Effects of Intramolecular π–π Stacking. Dalton Trans. 2018, 47, 2086–2098. [Google Scholar] [CrossRef] [PubMed]
- Culham, S.; Lanoë, P.-H.; Whittle, V.L.; Durrant, M.C.; Williams, J.A.G.A.G.; Kozhevnikov, V.N. Highly Luminescent Dinuclear Platinum(II) Complexes Incorporating Bis-Cyclometallating Pyrazine-Based Ligands: A Versatile Approach to Efficient Red Phosphors. Inorg. Chem. 2013, 52, 10992–11003. [Google Scholar] [CrossRef]
- Lanoë, P.-H.; Tong, C.M.; Harrington, R.W.; Probert, M.R.; Clegg, W.; Williams, J.A.G.; Kozhevnikov, V.N. Ditopic Bis-Terdentate Cyclometallating Ligands and Their Highly Luminescent Dinuclear Iridium(III) Complexes. Chem. Commun. 2014, 50, 6831–6936. [Google Scholar] [CrossRef]
- Ibrahim-Ouali, M.; Dumur, F. Recent Advances on Metal-Based near-Infrared and Infrared Emitting OLEDs. Molecules 2019, 24, 1412. [Google Scholar] [CrossRef]
- Tamura, Y.; Hisamatsu, Y.; Kumar, S.; Itoh, T.; Sato, K.; Kuroda, R.; Aoki, S. Efficient Synthesis of Tris-Heteroleptic Iridium(III) Complexes Based on the Zn2+-Promoted Degradation of Tris-Cyclometalated Iridium(III) Complexes and Their Photophysical Properties. Inorg. Chem. 2017, 56, 812–833. [Google Scholar] [CrossRef]
- Lepeltier, M.; Graff, B.; Lalevée, J.; Wantz, G.; Ibrahim-Ouali, M.; Gigmes, D.; Dumur, F. Heteroleptic Iridium (III) Complexes with Three Different Ligands: Unusual Triplet Emitters for Light-Emitting Electrochemical Cells. Org. Electron. Phys. Mater. Appl. 2016, 37, 24–34. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Q.; He, H.; Wang, L.; Zhang, J. Tuning the Electronic and Phosphorescence Properties of Blue-Emitting Iridium(Iii) Complexes through Different Cyclometalated Ligand Substituents: A Theoretical Investigation. Dalton Trans. 2015, 44, 8577–8589. [Google Scholar] [CrossRef] [PubMed]
- Huckaba, A.J.; Cao, B.; Hollis, T.K.; Valle, H.U.; Kelly, J.T.; Hammer, N.I.; Oliver, A.G.; Webster, C.E. Platinum CCC-NHC Benzimidazolyl Pincer Complexes: Synthesis, Characterization, Photostability, and Theoretical Investigation of a Blue-Green Emitter. Dalton Trans. 2013, 42, 8820–8826. [Google Scholar] [CrossRef]
- Darmawan, N.; Yang, C.-H.; Mauro, M.; Raynal, M.; Heun, S.; Pan, J.; Buchholz, H.; Braunstein, P.; De Cola, L. Efficient Near-UV Emitters Based on Cationic Bis-Pincer Iridium(III) Carbene Complexes. Inorg. Chem. 2013, 52, 10756–10765. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, S.W.; Zhang, M.; Wu, C.; Li, W.; Wu, Y.; Yang, C.; Kang, F.; Meng, H.; Wei, G. Highly Efficient Phosphorescent Blue-Emitting [3+2+1] Coordinated Iridium(III) Complex for OLED Application. Front. Chem. 2021, 9, 758357. [Google Scholar] [CrossRef]
- Sivasubramaniam, V.; Brodkorb, F.; Hanning, S.; Loebl, H.P.; van Elsbergen, V.; Boerner, H.; Scherf, U.; Kreyenschmidt, M. Fluorine Cleavage of the Light Blue Heteroleptic Triplet Emitter FIrpic. J. Fluor. Chem. 2009, 130, 640–649. [Google Scholar] [CrossRef]
- Williams, J.A.G.; Beeby, A.; Davies, E.S.; Weinstein, J.A.; Wilson, C. An Alternative Route to Highly Luminescent Platinum(II) Complexes: Cyclometalation with N ∧ C ∧ N-Coordinating Dipyridylbenzene Ligands. Inorg. Chem. Commun. 2003, 42, 8609–8611. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Lan, Y.; Ma, D.; Song, X.; Duan, L. Fluorine-Free, Highly Efficient, Blue-Green and Sky-Blue-Emitting Cationic Iridium Complexes and Their Use for Efficient Organic Light-Emitting Diodes. J. Mater. Chem. C 2018, 6, 1509–1520. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.; Pan, F.; He, L.; Duan, L. Cationic Iridium Complexes with 5-Phenyl-1 H -1,2,4-Triazole Type Cyclometalating Ligands: Toward Blue-Shifted Emission. Inorg. Chem. 2019, 58, 12132–12145. [Google Scholar] [CrossRef]
- Henwood, A.F.; Pal, A.K.; Cordes, D.B.; Slawin, A.M.Z.; Rees, T.W.; Momblona, C.; Babaei, A.; Pertegás, A.; Ortí, E.; Bolink, H.J.; et al. Blue-Emitting Cationic Iridium(III) Complexes Featuring Pyridylpyrimidine Ligands and Their Use in Sky-Blue Electroluminescent Devices. J. Mater. Chem. C 2017, 5, 9638–9650. [Google Scholar] [CrossRef]
- Constable, E.C.; Henney, R.P.G.; Leese, T.A. Cyclometallation Reactions of 6-Phenyl-2,2’-Bipyridine; a Potential C,N,N-Donor Analogue of 2,2’: 6’,2"-Terpyridine. Crystal and Molecular Structure of Dichlorobis(6-Phenyl-2,2’-Bipyridine)Ruthenium(II). J. Chem. Soc. Dalt. Trans. 1990, 443–449. [Google Scholar] [CrossRef]
- Daniels, R.E.; Culham, S.; Hunter, M.; Durrant, M.C.; Probert, M.R.; Clegg, W.; Williams, J.A.G.; Kozhevnikov, V.N. When Two Are Better than One: Bright Phosphorescence from Non-Stereogenic Dinuclear Iridium(III) Complexes. Dalton Trans. 2016, 45, 6949–6962. [Google Scholar] [CrossRef]
- Williams, J.A.G.; Develay, S.; Rochester, D.L.; Murphy, L. Optimising the Luminescence of Platinum(II) Complexes and Their Application in Organic Light Emitting Devices (OLEDs). Coord. Chem. Rev. 2008, 252, 2596–2611. [Google Scholar] [CrossRef]
- Whittle, V.L.; Williams, J.A.G. A New Class of Iridium Complexes Suitable for Stepwise Incorporation into Linear Assemblies: Synthesis, Electrochemistry, and Luminescence. Inorg. Chem. 2008, 47, 6596–6607. [Google Scholar] [CrossRef]
- Brouwer, A.M. Standards for Photoluminescence Quantum Yield Measurements in Solution (IUPAC Technical Report)*. Pure Appl. Chem. 2011, 83, 2213–2228. [Google Scholar] [CrossRef]
- Błachut, D.; Wojtasiewicz, K.; Czarnocki, Z. Some Pyridine Derivatives as “Route-Specific Markers” in 4-Methoxyamphetamine (PMA) Prepared by the Leuckart Method: Studies on the Role of the Aminating Agent in Their Distribution in the Final Product. Forensic Sci. Int. 2005, 152, 157–173. [Google Scholar] [CrossRef]
- Wilkinson, A.J.; Puschmann, H.; Howard, J.A.K.; Foster, C.E.; Williams, J.A.G. Luminescent Complexes of Iridium(III) Containing N^C^N-Coordinating Terdentate Ligands. Inorg. Chem. 2006, 45, 8685–8699. [Google Scholar] [CrossRef]
- Anderson, G.K.; Lin, M.; Sen, A.; Gretz, E. Reagents for Transition Metal Complexes and Oroganometallic Synthesis. In Inorganic Syntheses; Angelici, R.J., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1990; Volume 28, pp. 1–463. [Google Scholar]
- Kumaresan, D.; Shankar, K.; Vaidya, S.; Balzani, V.; Campagna, S.; Williams, J.A.G.; Francesco, P.; Bergamini, G.; Balzani, V.; Indelli, M.; et al. Photochemistry and Photophysics of Coordination Compounds: Platinum. In Photochemistry and Photophysics of Coordination Compounds II; Balzani, V., Campagna, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 281, pp. 205–268. ISBN 978-3-540-73348-5. [Google Scholar]
- Li, G.; Congrave, D.G.; Zhu, D.; Su, Z.; Bryce, M.R. Recent Advances in Luminescent Dinuclear Iridium(III) Complexes and Their Application in Organic Electroluminescent Devices. Polyhedron 2018, 140, 146–157. [Google Scholar] [CrossRef]
- Williams, J.A.G. The Coordination Chemistry of Dipyridylbenzene: N-Deficient Terpyridine or Panacea for Brightly Luminescent Metal Complexes? Chem. Soc. Rev. 2009, 38, 1783–1801. [Google Scholar] [CrossRef] [PubMed]
- Flamigni, L.; Barbieri, A.; Sabatini, C.; Ventura, B.; Barigelletti, F. Photochemistry and Photophysics of Coordination Compounds: Iridium. In Photochemistry and Photophysics of Coordination Compounds II; Springer: Berlin/Heidelberg, Germany, 2007; pp. 143–203. [Google Scholar]
- Wilkinson, A.J.; Goeta, A.E.; Foster, C.E.; Williams, J.A.G. Synthesis and Luminescence of a Charge-Neutral, Cyclometalated Iridium(III) Complex Containing NCN- and CNC-Coordinating Terdentate Ligands. Inorg. Chem. 2004, 43, 6513–6515. [Google Scholar] [CrossRef]
- Brulatti, P.; Gildea, R.J.; Howard, J.A.K.; Fattori, V.; Cocchi, M.; Williams, J.A.G. Luminescent Iridium(III) Complexes with N^C^N-Coordinated Terdentate Ligands: Dual Tuning of the Emission Energy and Application to Organic Light-Emitting Devices. Inorg. Chem. 2012, 51, 3813–3826. [Google Scholar] [CrossRef] [PubMed]
- Schulze, B.; Friebe, C.; Jäger, M.; Görls, H.; Birckner, E.; Winter, A.; Schubert, U.S. Pt(II) Phosphors with Click-Derived 1,2,3-Triazole-Containing Tridentate Chelates. Organometallics 2018, 37, 145–155. [Google Scholar] [CrossRef]
- Rausch, A.F.; Homeier, H.H.H.; Yersin, H. Organometallic Pt(II) and Ir(III) Triplet Emitters for OLED Applications and the Role of Spin–Orbit Coupling: A Study Based on High-Resolution Optical Spectroscopy; Lees, A.J., Ed.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Scattergood, P.A.; Ranieri, A.M.; Charalambou, L.; Comia, A.; Ross, D.A.W.; Rice, C.R.; Hardman, S.J.O.; Heully, J.-L.; Dixon, I.M.; Massi, M.; et al. Unravelling the Mechanism of Excited-State Interligand Energy Transfer and the Engineering of Dual Emission in [Ir(C^N)2 (N^N)]+ Complexes. Inorg. Chem. 2020, 59, 1785–1803. [Google Scholar] [CrossRef]
- Obara, S.; Itabashi, M.; Okuda, F.; Tamaki, S.; Tanabe, Y.; Ishii, Y.; Nozaki, K.; Haga, M. Highly Phosphorescent Iridium Complexes Containing Both Tridentate Bis(Benzimidazolyl)-Benzene or -Pyridine and Bidentate Phenylpyridine: Synthesis, Photophysical Properties, and Theoretical Study of Ir-Bis(Benzimidazolyl)Benzene Complex. Inorg. Chem. 2006, 45, 8907–8921. [Google Scholar] [CrossRef] [PubMed]
- Lees, A.J. The Luminescence Rigidochromic Effect Exhibited by Organometailic Complexes: Rationale and Applications. Comments Inorg. Chem. A J. Crit. Discuss. Curr. Lit. 1995, 17, 319–346. [Google Scholar] [CrossRef]
- Murphy, L.; Brulatti, P.; Fattori, V.; Cocchi, M.; Williams, J. a G. Blue-Shifting the Monomer and Excimer Phosphorescence of Tridentate Cyclometallated Platinum(II) Complexes for Optimal White-Light OLEDs. Chem. Commun. (Camb) 2012, 48, 5817–5819. [Google Scholar] [CrossRef] [PubMed]
Bond Length (Å) | Angles (°) | ||
---|---|---|---|
Ir−C(1) | 1.921(6) | C(1)−Ir−N(2) | 80.4(2) |
Ir−N(2) | 2.043(6) | C(1)-Ir−N(3) | 80.0(2) |
Ir−N(3) | 2.053(5) | C(1)−Ir−N(4) | 174.2(2) |
Ir−N(4) | 2.158(5) | C(1)−Ir−C(18) | 94.8(2) |
Ir−C(18) | 2.005(4) | C(1)−Ir−Cl | 92.7(2) |
Ir−Cl | 2.462(2) | N(3)−Ir−C1 | 91.5(1) |
N(2)-Ir−C1 | 88.1(1) | ||
N(4)−Ir−Cl | 93.0(1) | ||
C(18)−Ir−Cl | 172.1(1) | ||
N(2)−Ir−N(3) | 160.3(2) |
Complexes | λabs [nm] (ε 103 [M−1 cm−1]) | λem [nm] | Φ (Air) | τ [µs] (Air) | kr × 105 [s−1] 2 | Σknr × 105 [s−1] 2 | k[O2] × 109 [M−1 s−1] 3 | λem [nm] 77 K | τ [µs] 77 K |
---|---|---|---|---|---|---|---|---|---|
[Ir(dpyx)(ppy)Cl] 1 [57] | 258 (39.7), 285 (37.0), 353 (6.2), 369 (7.8), 399 (10.0), 417 (11.3), 455 (3.6), 492 (1.3), | 508 | 0.76 (0.02) | 1.6 (<0.10) | 4.8 | 1.5 | 4.9 | - | - |
[Pt(dpx)Cl] [65] | - | 493 *, 524, 560 | 0.49 | 3.4 | 1.4 | 1.4 | - | - | - |
7 | 262 (11.9), 293 (75.5), 314 (29.4), 327 (34.6), 339 (41.0) 349 (23.3), 368 (26.7), 403 (2.9), 440 (0.8) | 470 *, 502, 533 | 0.18 (0.11) | 1.6 (1.02) | 1.1 | 5.1 | 0.2 | 463 *, 498, 538 | 2.3 |
8 | 254 (32.1), 280 (34.5), 400 (6.6), 440 (1.9), 484 (0.7) | 505 *, 528 | 0.61 (0.10) | 0.87 (0.12) | 7.0 | 4.5 | 2.6 | 500 *, 538, 585 | 4.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lanoë, P.-H.; Philouze, C.; Loiseau, F. Synthesis of an Electrodeficient Dipyridylbenzene-like Terdentate Ligand: Cyclometallating Ligand for Highly Emitting Iridium(III) and Platinum(II) Complexes. Organics 2023, 4, 403-416. https://doi.org/10.3390/org4030029
Lanoë P-H, Philouze C, Loiseau F. Synthesis of an Electrodeficient Dipyridylbenzene-like Terdentate Ligand: Cyclometallating Ligand for Highly Emitting Iridium(III) and Platinum(II) Complexes. Organics. 2023; 4(3):403-416. https://doi.org/10.3390/org4030029
Chicago/Turabian StyleLanoë, Pierre-Henri, Christian Philouze, and Frédérique Loiseau. 2023. "Synthesis of an Electrodeficient Dipyridylbenzene-like Terdentate Ligand: Cyclometallating Ligand for Highly Emitting Iridium(III) and Platinum(II) Complexes" Organics 4, no. 3: 403-416. https://doi.org/10.3390/org4030029
APA StyleLanoë, P.-H., Philouze, C., & Loiseau, F. (2023). Synthesis of an Electrodeficient Dipyridylbenzene-like Terdentate Ligand: Cyclometallating Ligand for Highly Emitting Iridium(III) and Platinum(II) Complexes. Organics, 4(3), 403-416. https://doi.org/10.3390/org4030029