Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (359)

Search Parameters:
Keywords = phosphorescence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 7993 KiB  
Review
Quantum Dot-Based Luminescent Sensors: Review from Analytical Perspective
by Alissa Loskutova, Ansar Seitkali, Dinmukhamed Aliyev and Rostislav Bukasov
Int. J. Mol. Sci. 2025, 26(14), 6674; https://doi.org/10.3390/ijms26146674 - 11 Jul 2025
Viewed by 1010
Abstract
Quantum Dots (QDs) are small semiconductor nanoparticles (<10 nm) with strong, relatively stable, and tunable luminescent properties, which are increasingly applied in the sensing and detection of various analytes, including metal ions, biomarkers, explosives, proteins, RNA/DNA fragments, pesticides, drugs, and pollutants. In this [...] Read more.
Quantum Dots (QDs) are small semiconductor nanoparticles (<10 nm) with strong, relatively stable, and tunable luminescent properties, which are increasingly applied in the sensing and detection of various analytes, including metal ions, biomarkers, explosives, proteins, RNA/DNA fragments, pesticides, drugs, and pollutants. In this review, we critically assess recent developments and advancements in luminescent QD-based sensors from an analytical perspective. We collected, tabulated, and analyzed relevant data reported in 124 peer-reviewed articles. The key analytical figures of merit, including the limit of detection (LOD), excitation and emission wavelengths, and size of the particles were extracted, tabulated, and analyzed with graphical representations. We calculated the geometric mean and median LODs from those tabulated publications. We found the following geometric mean LODs: 38 nM for QD-fluorescent-based sensors, 26 nM for QD-phosphorescent-based sensors, and an impressively low 0.109 pM for QD-chemiluminescent-based sensors, which demonstrate by far the best sensitivity in QD-based detection. Moreover, AI-based sensing methods, including the ATTBeadNet model, optimized principal component analysis(OPCA) model, and Support Vector Machine (SVM)-based system, were reviewed as they enhance the analytical performance of the detection. Despite these advances, there are still challenges that include improvements in recovery values, biocompatibility, stability, and overall performance. This review highlights trends to guide the future design of robust, high-performance, QD-based luminescent sensors. Full article
Show Figures

Figure 1

24 pages, 2360 KiB  
Article
Influence of Ligand Isomerism on the Photophysical Properties of AIPE-Active Rhenium(I) Complexes: Investigations with a 2-(1,2,3-Triazol-1-yl)pyridine (Tapy)-Based Complex and Its Triazolylidene Derivatives
by Abanoub Mosaad Abdallah, Mariusz Wolff, Nadine Leygue, Maëlle Deleuzière, Nathalie Saffon-Merceron, Charles-Louis Serpentini, Eric Benoist and Suzanne Fery-Forgues
Molecules 2025, 30(13), 2776; https://doi.org/10.3390/molecules30132776 - 27 Jun 2025
Viewed by 484
Abstract
Due to their rare properties of solid-state luminescence enhancement (SLE), tricarbonylrhenium complexes are promising candidates for applications as photoluminescent materials. However, the effect of isomerism on optical properties is still not well known. The aim of this in-depth study is to explore the [...] Read more.
Due to their rare properties of solid-state luminescence enhancement (SLE), tricarbonylrhenium complexes are promising candidates for applications as photoluminescent materials. However, the effect of isomerism on optical properties is still not well known. The aim of this in-depth study is to explore the behavior of a 2-(1,2,3-triazol-1-yl)pyridine (tapy) complex and compare it with that of the isomers studied previously. Two derivatives that incorporate a mesoionic carbene ligand and represent an emerging class of molecules were also synthesized and compared with the corresponding isomers. The crystallographic data revealed that compounds in the solid state have little or no π–π interactions. The spectroscopic study was supported by DFT calculations. All the compounds were weakly phosphorescent in solution but exhibited a marked SLE effect. The Re-Tapy complex is an excellent solid-state emitter (PLQY = 0.62), well suited for applications related to aggregation-induced phosphorescence emission (AIPE). Its sensitivity to mechanical stimuli was unprecedented among the isomers considered to date. On the other hand, triazolylidene complexes are less emissive than their pyta(1,2,3) counterparts. This study shows how the ligand isomerism influences the optical properties of tricarbonylrhenium(I) complexes. It indicates that selecting the right pattern is a key factor for the design of efficient photoluminescent materials. Full article
Show Figures

Graphical abstract

15 pages, 1662 KiB  
Article
Peripheral Cycloalkyl Functionalized Tetradentate Platinum(II) Phosphorescent Complex: Synthesis, Optical Tuning, and OLED Applications
by Giheon Park, Seon-jin Lee, Minsoo Kang and Wan Pyo Hong
Materials 2025, 18(13), 2942; https://doi.org/10.3390/ma18132942 - 21 Jun 2025
Viewed by 747
Abstract
A tetradentate Pt(II) complex with a 5/6/6 structural backbone, Pt(PhPiPy-O-PytmCz), was synthesized by incorporating two distinct cycloalkyl groups. These structural modifications significantly enhanced the photoluminescence quantum yield and effectively increased the distance between molecules, thereby mitigating undesirable intermolecular interactions and triplet-state quenching. This [...] Read more.
A tetradentate Pt(II) complex with a 5/6/6 structural backbone, Pt(PhPiPy-O-PytmCz), was synthesized by incorporating two distinct cycloalkyl groups. These structural modifications significantly enhanced the photoluminescence quantum yield and effectively increased the distance between molecules, thereby mitigating undesirable intermolecular interactions and triplet-state quenching. This strategic molecular design resulted in an external quantum efficiency of 11.5% at a wavelength of 539 nm and significantly enhanced operational lifetimes in green phosphorescent organic light-emitting diodes (OLEDs). These findings are expected to inspire the development of new green luminescent materials and innovative strategies in OLED technology. Full article
(This article belongs to the Special Issue Advanced and Smart Materials in Photoelectric Applications)
Show Figures

Figure 1

14 pages, 1591 KiB  
Article
Synergistic Control of Liquid Crystallinity and Phosphorescence in Gold(I) Complexes via Strategic Alkyl Chain Design
by Arushi Rawat, Kohsuke Matsumoto, Ganesan Prabusankar and Osamu Tsutsumi
Crystals 2025, 15(6), 554; https://doi.org/10.3390/cryst15060554 - 10 Jun 2025
Viewed by 1260
Abstract
Liquid crystals exhibit unique properties that can be tailored in response to external stimuli. Significant research is directed toward the development of luminescent materials exhibiting liquid crystallinity for various applications. The present work reports Au(I) complexes featuring N-heterocyclic carbene and phenyl acetylide ligands. [...] Read more.
Liquid crystals exhibit unique properties that can be tailored in response to external stimuli. Significant research is directed toward the development of luminescent materials exhibiting liquid crystallinity for various applications. The present work reports Au(I) complexes featuring N-heterocyclic carbene and phenyl acetylide ligands. Metal complexes enable the utilization of the triplet excitons through their inherent spin–orbit coupling, promoting intersystem crossing from singlet (Sn) to triplet (Tn) states to observe room-temperature phosphorescence (RTP). The strong bonds between carbene and Au enhance the thermal stability, and the substituted benzimidazole ring alters the thermodynamic and photophysical properties of the complexes. Incorporating the acetylide ligands with long alkoxy chains led to the formation of liquid crystalline (LC) phases, which exhibited stability over a wide temperature range. Additionally, the luminescence behavior was affected by the ethynyl ligands, and high quantum yields of RTP were observed. This study establishes the development of LC Au(I) complexes with a thermodynamically stable LC mesophase over a wide temperature range for applications in the field of light-emitting functional materials. Full article
(This article belongs to the Special Issue State-of-the-Art Liquid Crystals Research in Japan (2nd Edition))
Show Figures

Figure 1

14 pages, 5458 KiB  
Article
Efficient Room-Temperature Luminescence of Indole-5-Carboxamide in Poly(vinyl alcohol) Films
by Bong Lee, Agnieszka Jablonska, Rajveer Sagoo, Danh Pham, Trang Thien Pham, Sergei V. Dzyuba, Zygmunt Gryczynski and Ignacy Gryczynski
Photochem 2025, 5(2), 14; https://doi.org/10.3390/photochem5020014 - 4 Jun 2025
Viewed by 999
Abstract
N-phenyl-1H-Indole-5-carboxamide (Ind-CA) exhibits previously unknown room-temperature phosphorescence (RTP) when immobilized in poly (vinyl alcohol) film (PVA film). High-fluorescence anisotropy of Ind-CA in PVA suggests that the fluorophores are strongly immobilized in a polymer matrix, while a relatively low (ca. 0.1) quantum yield [...] Read more.
N-phenyl-1H-Indole-5-carboxamide (Ind-CA) exhibits previously unknown room-temperature phosphorescence (RTP) when immobilized in poly (vinyl alcohol) film (PVA film). High-fluorescence anisotropy of Ind-CA in PVA suggests that the fluorophores are strongly immobilized in a polymer matrix, while a relatively low (ca. 0.1) quantum yield indicates a strong non-radiative singlet excited state deactivation. With an increased triplet-state population, Ind-CA can be used for various phosphorescence studies. The room-temperature phosphorescence (RTP) capability of Ind-CA indicates that there is an intricate balance between RTP and the structure of the indole-containing luminophore, as an isomeric N-1H-indole-5-ylbenzamide (Ind-BA) does not show any appreciable levels of RTP. Moreover, the phosphorescence lifetime of Ind-CA is about two orders of magnitude longer than many other 5-substituted indoles. These results further highlight the prospects for the potential rational designs of small molecules with desired triplet-state configuration and RTP characteristics. Full article
Show Figures

Figure 1

19 pages, 4806 KiB  
Article
Does Metal Matter: Comparing Photophysical Properties of Bis-Cyclometalated Alkynylphosphonium Au(III) and Pt(II) Complexes
by Maksim Luginin, Aleksandra Paderina, Anastasia Sizova, Elena Tupikina and Elena Grachova
Molecules 2025, 30(11), 2434; https://doi.org/10.3390/molecules30112434 - 2 Jun 2025
Viewed by 624
Abstract
In this work, two series of Au(III) and Pt(II) alkynylphosphonium complexes of composition [M(CNC)(C2−L−P(CH3)Ph2)]n+ Pt1Pt3 (n = 0) and Au1Au3 (n = 1), (CNC = 2,6-diphenylpyridine; L = phenyl, biphenyl, naphthyl) [...] Read more.
In this work, two series of Au(III) and Pt(II) alkynylphosphonium complexes of composition [M(CNC)(C2−L−P(CH3)Ph2)]n+ Pt1Pt3 (n = 0) and Au1Au3 (n = 1), (CNC = 2,6-diphenylpyridine; L = phenyl, biphenyl, naphthyl) were synthesized and characterized to discover the similarities and differences in photophysical properties between isoelectronic metallocentres. It is shown that Au(III) and Pt(II) complexes obtained demonstrate different photophysical properties despite isoelectronic metal centres, and some reasons for that are discussed based on experimental data and quantum-chemical calculation results. Complex Pt1 also demonstrated the first example of room-temperature solution phosphorescence in the family of [Pt(CNC)(alkynyl)] complexes. It has been found that the crystal packing of Pt1 contains a Pt–H interaction, qualified by quantum-chemical calculations as a unique hydrogen bond. Full article
Show Figures

Graphical abstract

17 pages, 3172 KiB  
Article
The Effect of the N-Oxide Oxygen Atom on the Crystalline and Photophysical Properties of [1,2,5]Oxadiazolo[3,4-d]pyridazines
by Timofey N. Chmovzh, Alisia V. Tsorieva, Vladislav M. Korshunov, Egor D. Kotov, Darina I. Nasyrova, Mikhail E. Minyaev, Nikolay P. Datskevich, Ilya V. Taydakov, Michail N. Elinson and Oleg A. Rakitin
Molecules 2025, 30(11), 2374; https://doi.org/10.3390/molecules30112374 - 29 May 2025
Viewed by 569
Abstract
A series of novel fluorescent donor–acceptor–donor (D-A-D) dyes containing [1,2,5]oxadiazolo[3,4-d]pyridazine and its 1-oxide as electron-withdrawing groups has been synthesized and thoroughly investigated using X-ray diffraction and molecular spectroscopy methods. This study showed that the introduction of N-oxide into the 1,2,5-oxadiazole [...] Read more.
A series of novel fluorescent donor–acceptor–donor (D-A-D) dyes containing [1,2,5]oxadiazolo[3,4-d]pyridazine and its 1-oxide as electron-withdrawing groups has been synthesized and thoroughly investigated using X-ray diffraction and molecular spectroscopy methods. This study showed that the introduction of N-oxide into the 1,2,5-oxadiazole ring in the acceptor fragment leads to a significant decrease in the luminescence intensity and quantum yield of the dyes. A comprehensive comparison of the photophysical properties of the obtained compounds containing the 1,2,5-oxadiazole ring with the previously studied [1,2,5]thia- and 1,2,5-selenadiazolo[3,4-d]pyridazine analogs showed that the oxygen substitution in the acceptor fragment shifts the phosphorescence maximum from the NIR region of 980–1100 nm to the red region of 690–770 nm. In contrast, for oxygen- and sulfur-containing dyes, purely red fluorescence with a maximum in the spectral range of 620–900 nm is observed. The crystal structures of furoxan-containing 3d·½CHCl3 and furazan-containing 4d exhibit a non-planar [1,2,5]oxadiazolo[3,4-d]pyridazine fragment. We have found that short non-covalent interactions of the furoxan system with a lattice chloroform molecule in 3d lead to luminescence quenching. Meanwhile, in the 4d dye, the intermolecular π-π interactions of pyridazine nitrogen atoms with the N-carbazolyl group of the adjacent molecule should facilitate intermolecular charge transfer (ICT) emission. Thus, the luminescence maxima for these dyes can be tuned across a broad range of 700–1100 nm by varying the number of chalcogen atoms, highlighting the potential for tailoring optical properties in optoelectronic applications. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

14 pages, 2757 KiB  
Article
Highly Efficient Inverted Organic Light-Emitting Devices with Li-Doped MgZnO Nanoparticle Electron Injection Layer
by Hwan-Jin Yoo, Go-Eun Kim, Chan-Jun Park, Su-Been Lee, Seo-Young Kim and Dae-Gyu Moon
Micromachines 2025, 16(6), 617; https://doi.org/10.3390/mi16060617 - 24 May 2025
Viewed by 545
Abstract
Inverted organic light-emitting devices (OLEDs) have been attracting considerable attention due to their advantages such as high stability, low image sticking, and low operating stress in display applications. To address the charge imbalance that has been known as a critical issue of the [...] Read more.
Inverted organic light-emitting devices (OLEDs) have been attracting considerable attention due to their advantages such as high stability, low image sticking, and low operating stress in display applications. To address the charge imbalance that has been known as a critical issue of the inverted OLEDs, Li-doped MgZnO nanoparticles were synthesized as an electron-injection layer of the inverted OLEDs. Hexagonal wurtzite-structured Li-doped MgZnO nanoparticles were synthesized at room temperature via a solution precipitation method using LiCl, magnesium acetate tetrahydrate, zinc acetate dihydrate, and tetramethylammonium hydroxide pentahydrate. The Mg concentration was fixed at 10%, while the Li concentration was varied up to 15%. The average particle size decreased with Li doping, exhibiting the particle sizes of 3.6, 3.0, and 2.7 nm for the MgZnO, 10% and 15% Li-doped MgZnO nanoparticles, respectively. The band gap, conduction band minimum and valence band maximum energy levels, and the visible emission spectrum of the Li-doped MgZnO nanoparticles were investigated. The surface roughness and electrical conduction properties of the Li-doped MgZnO nanoparticle films were also analyzed. The inverted phosphorescent OLEDs with Li-doped MgZnO nanoparticles exhibited higher external quantum efficiency (EQE) due to better charge balance resulting from suppressed electron conduction, compared to the undoped MgZnO nanoparticle devices. The maximum EQE of 21.7% was achieved in the 15% Li-doped MgZnO nanoparticle devices. Full article
(This article belongs to the Special Issue Photonic and Optoelectronic Devices and Systems, Third Edition)
Show Figures

Figure 1

14 pages, 10226 KiB  
Article
Exploring the Photophysical Properties of Some Dextran-Iron Oxide Nanoparticle Composites
by Ion Lungu, Tamara Potlog, Anton Airinei, Radu Tigoianu and Carmen Gherasim
Molecules 2025, 30(11), 2290; https://doi.org/10.3390/molecules30112290 - 23 May 2025
Cited by 1 | Viewed by 641
Abstract
In this study, we report the synthesis and characterization of Fe3O4 nanoparticles coated with dextran. The structural and optical properties of the Dx:Fe3O4 synthesized composites were investigated by Fourier Transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and [...] Read more.
In this study, we report the synthesis and characterization of Fe3O4 nanoparticles coated with dextran. The structural and optical properties of the Dx:Fe3O4 synthesized composites were investigated by Fourier Transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and UV–Vis absorption spectroscopy. For the first time in this paper, the photophysics of Dx:Fe3O4 composites in water is studied using fluorescence and phosphorescence molecular spectrometry. An analysis of the absorption spectra of the Dx:Fe3O4 composite reveals the broad absorption bands with maxima at wavelengths of 227 nm, 264 nm, and 340 nm. Dx:Fe3O4 composite nanoparticles in water exhibit strong fluorescence with a quantum yield of 0.24% in contrast to 0.07% for dextran. Phosphorescence spectra confirm the formation of new emission bands within the Dx:Fe3O4 solution evidenced by the maxima shift for both dextran and Dx:Fe3O4 composites. Full article
(This article belongs to the Special Issue Organic and Inorganic Luminescent Materials, 2nd Edition)
Show Figures

Figure 1

12 pages, 2422 KiB  
Article
A Pt(II) Complex with a PNN Type Ligand Dppmaphen Exhibits Selective, Reversible Vapor-Chromic Photoluminescence
by Yuanyuan Hu, Jiangyue Wang, David James Young, Hong-Xi Li, Yuxin Lu and Zhi-Gang Ren
Inorganics 2025, 13(5), 170; https://doi.org/10.3390/inorganics13050170 - 16 May 2025
Viewed by 510
Abstract
The reaction of PtCl2 with a PNN type ligand dppmaphen (N-(diphenylphosphanylmethyl)-2-amino-1,10-phenanthroline) yielded a new Pt(II) complex [Pt(dppmaphen)Cl]Cl·H2O (1). Upon excitation at 370 nm, compound 1 emits yellow phosphorescence at 539 and 576 nm at room temperature. Exposure of [...] Read more.
The reaction of PtCl2 with a PNN type ligand dppmaphen (N-(diphenylphosphanylmethyl)-2-amino-1,10-phenanthroline) yielded a new Pt(II) complex [Pt(dppmaphen)Cl]Cl·H2O (1). Upon excitation at 370 nm, compound 1 emits yellow phosphorescence at 539 and 576 nm at room temperature. Exposure of compound 1 to MeOH vapor induces a shift in its emission to 645 nm, which can be attributed to the substitution of MeOH molecules for H2O, resulting in the disruption and reorganization of weak interactions in 1. This response is selective for MeOH and, to a lesser extent, EtOH, the orange photoluminescence recovered in air. The emission change of 1 was reversible and visible to the naked eye. Full article
Show Figures

Graphical abstract

13 pages, 2773 KiB  
Article
Effect of Rare-Earth Co-Doping on the Trap Level Concentrations in Silica Glasses: Experimental and Theoretical Study of the Light Emission Under X-Rays for Dosimetry Applications
by Ismail Zghari, Hicham El Hamzaoui, Adriana Morana, Youcef Ouerdane, Bruno Capoen, Sarah Garzandat, Sylvain Girard, Aziz Boukenter, Franck Mady, Mourad Benabdesselam, Gilles Mélin and Mohamed Bouazaoui
Sensors 2025, 25(10), 3005; https://doi.org/10.3390/s25103005 - 9 May 2025
Viewed by 451
Abstract
In this paper, an experimental and theoretical study was undertaken to assess the impact of rare-earth co-doping of silica glasses on the light emission under X-rays. To this aim, radioluminescence (RL), phosphorescence (PP), and thermoluminescence (TL) signals of Ce3+/Gd3+ co-doped [...] Read more.
In this paper, an experimental and theoretical study was undertaken to assess the impact of rare-earth co-doping of silica glasses on the light emission under X-rays. To this aim, radioluminescence (RL), phosphorescence (PP), and thermoluminescence (TL) signals of Ce3+/Gd3+ co-doped silica glasses have been successively measured and combined at different dose rates and irradiation temperatures. The RL response of the weakly co-doped sample was found to be temperature-independent between 273 K and 353 K. This result suggests that, based on this RL response, it is possible to design ionizing radiation sensors independent of the irradiation temperature in the corresponding range. Moreover, a model that considers the electron–hole pair generation, the charge carrier trapping–detrapping, and the electron–hole recombination in the localized and delocalized bands has been developed to reproduce these optical signals. The theoretical model also explains the temperature independence of the RL response between 273 K and 353 K for the weakly co-doped sample and, therefore, the operating principle of an X-ray sensor independent of the irradiation temperature. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2025)
Show Figures

Figure 1

13 pages, 7718 KiB  
Article
Recoverable and Sensitive Pressure-Induced Mechanochromic Photoluminescence of a Au-P Complex
by Ningwen Yang, Yijia Chang, Jiangyue Wang, David James Young, Hong-Xi Li, Yuxin Lu and Zhi-Gang Ren
Molecules 2025, 30(9), 2011; https://doi.org/10.3390/molecules30092011 - 30 Apr 2025
Viewed by 383
Abstract
A binuclear Au-P complex [Au2(2-bdppmapy)2](PF6)2 (1) was synthesised by the reaction of 2-bdppmapy (N,N′-bis-(diphenylphosphanylmethyl-2-aminopyridine) with AuCN and [Cu(MeCN)4]PF6. The solid phase of 1 emitted bright yellow phosphorescence at λmax [...] Read more.
A binuclear Au-P complex [Au2(2-bdppmapy)2](PF6)2 (1) was synthesised by the reaction of 2-bdppmapy (N,N′-bis-(diphenylphosphanylmethyl-2-aminopyridine) with AuCN and [Cu(MeCN)4]PF6. The solid phase of 1 emitted bright yellow phosphorescence at λmax = 580 nm under UV excitation (QY = 4.41%, τ = 1.88 μs), which shifted to green (λmax = 551 nm, QY = 5.73%) after being pressurised under 5 MPa. This colour change was recoverable upon exposure to CH2Cl2 vapor. Similar mechanochromic photoluminescence behaviour was observed after grinding the crystals of 1. A filter paper impregnated with 1 demonstrated recyclable write/erase functionality for encrypted information transfer. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Graphical abstract

16 pages, 4844 KiB  
Article
Electrical and Optical Properties Depending on the Substitution Position of a Novel Indolocarbazole Dimer
by Jiyun Kim, Suhyeon Jeong, Sangwook Park, Saeyoung Oh, Kiho Lee, Soonhang Lee, Jihoon Lee, Hayoon Lee and Jongwook Park
Materials 2025, 18(9), 2058; https://doi.org/10.3390/ma18092058 - 30 Apr 2025
Viewed by 444
Abstract
Two innovative dimeric derivatives of indolo[3,2,1-jk]carbazole (ICz), named 7,7′-biindolo[3,2,1-jk]carbazole (ICzDO) and 4,4′-biindolo[3,2,1-jk]carbazole (ICzDM), have been developed. Both dimers consist of two ICz units coupled through distinct ortho and meta positions. In the solution state, ICzDO and ICzDM exhibited photoluminescence (PL) maxima at 379 [...] Read more.
Two innovative dimeric derivatives of indolo[3,2,1-jk]carbazole (ICz), named 7,7′-biindolo[3,2,1-jk]carbazole (ICzDO) and 4,4′-biindolo[3,2,1-jk]carbazole (ICzDM), have been developed. Both dimers consist of two ICz units coupled through distinct ortho and meta positions. In the solution state, ICzDO and ICzDM exhibited photoluminescence (PL) maxima at 379 nm and 391 nm, demonstrating emission in the deep-blue region. These compounds show exceptionally narrow emission spectra, characterized by full width at half maximum (FWHM) of 28 nm for ICzDO and 26 nm for ICzDM. In the film state, ICzDM exhibited a photoluminescence (PL) maximum at 428 nm, whereas ICzDO showed a red-shifted emission at 507 nm with a broad full width at half maximum (FWHM) of 87 nm, indicating significant red-shifted excimer emission characteristics. This is attributed to its aggregation-enhanced excimer emission (AEEE) characteristics. When used as host materials for red phosphorescent OLEDs, both compounds enabled efficient energy transfer. Devices using ICzDM as the host attained highly efficient external quantum efficiency (EQE) values of 13.5%, coupled with remarkable color purity represented by Commission Internationale de l’Éclairage (CIE) coordinates of (0.685, 0.314). These findings emphasize how strategic variations in linking positions of identical chromophores can markedly enhance OLED device performance, paving the way for innovative material designs in next-generation organic semiconductor technologies. Full article
(This article belongs to the Special Issue Advancements in Optical Materials and Photonic Device Technologies)
Show Figures

Figure 1

15 pages, 2487 KiB  
Article
Selenium-Containing Multi-Resonance Thermally Activated Delayed Fluorescence Host Material for Green and Red Phosphorescent OLEDs
by Hyukmin Kwon, Seokwoo Kang, Sangwook Park, Saeyoung Oh, Sang-Tae Kim, Kiho Lee, Hayoon Lee and Jongwook Park
Materials 2025, 18(9), 2040; https://doi.org/10.3390/ma18092040 - 29 Apr 2025
Viewed by 725
Abstract
We report the molecular design and synthesis of a novel selenium-containing multi-resonance thermally activated delayed fluorescence (MR-TADF) host material, 3,6-di-tert-butyl-9,16-dioxa-15-selena-4b-boraindeno[2,1-a]naphtho[3,2,1-de]anthracene (TDBA-SePh), for green and red phosphorescent organic light-emitting diodes (PhOLEDs). By incorporating selenium into the DOBNA-based MR-TADF backbone, the reverse intersystem crossing (RISC) [...] Read more.
We report the molecular design and synthesis of a novel selenium-containing multi-resonance thermally activated delayed fluorescence (MR-TADF) host material, 3,6-di-tert-butyl-9,16-dioxa-15-selena-4b-boraindeno[2,1-a]naphtho[3,2,1-de]anthracene (TDBA-SePh), for green and red phosphorescent organic light-emitting diodes (PhOLEDs). By incorporating selenium into the DOBNA-based MR-TADF backbone, the reverse intersystem crossing (RISC) process was effectively activated, leading to enhanced utilization of triplet excitons. The corresponding RISC rate was determined to be 3.91 × 104 s−1. When applied to PhOLED devices, TDBA-SePh-based green and red OLEDs exhibited higher external quantum efficiency (EQE) and reduced efficiency roll-off compared to conventional mCP-based host materials. At a luminance of 1000 cd m−2, the green and red devices exhibited roll-off values of 2.5% and 4.3%, respectively. This improvement is attributed to the incorporation of selenium as a heteroatom, which accelerates the RISC process, thereby suppressing triplet-triplet annihilation (TTA). These results suggest that adopting a similar molecular design strategy can not only reduce efficiency roll-off but also enhance device efficiency and operational stability, offering significant potential for future OLED applications. Full article
Show Figures

Figure 1

15 pages, 6629 KiB  
Article
Photoreactive Properties of Melanin Obtained from Human Induced Pluripotent Stem Cell-Derived Melanocytes
by Krystian Mokrzynski, Mateusz Wojtala, Maciej Sulkowski, Shosuke Ito, Kazumasa Wakamatsu, Andrzej Zadlo, Marcin Majka, Tadeusz Sarna and Michal Sarna
Int. J. Mol. Sci. 2025, 26(9), 4119; https://doi.org/10.3390/ijms26094119 - 26 Apr 2025
Viewed by 776
Abstract
Although melanin is viewed as a natural sunscreen that protects pigmented cells against the adverse effects of solar radiation, recent studies have demonstrated that, under certain conditions, the pigment can actually contribute to light-induced oxidative damage of the cells. However, the main issue [...] Read more.
Although melanin is viewed as a natural sunscreen that protects pigmented cells against the adverse effects of solar radiation, recent studies have demonstrated that, under certain conditions, the pigment can actually contribute to light-induced oxidative damage of the cells. However, the main issue with such studies is finding natural pigments without photooxidative modifications. Recently, melanin obtained from melanocytes, generated from human induced pluripotent stem cells (hiPSC-Mel), was suggested as a promising source of the pigment without significant photooxidation. Although different studies have demonstrated the feasibility of the above-mentioned technique to obtain melanin-producing cells, no thorough analysis of the physicochemical properties of the pigment has been performed. To address this issue, we examined the key physicochemical parameters, including the aerobic photoreactivity of melanin isolated from hiPSC-Mel and compared them with those of melanin from other known sources of the pigment, such as bovine retinal pigment epithelium (bRPE) and phototype V (PT-V) hair. Electron paramagnetic resonance (EPR) spectroscopy, dynamic light scattering, UV–Vis absorption and HPLC analysis of melanin degradation products were used. The ability of the examined melanins to photogenerate reactive oxygen species was determined by employing EPR oximetry, EPR spin-trapping and time-resolved singlet oxygen phosphorescence. Although the results of such measurements demonstrated that melanin obtained from hiPSC-Mel exhibited the physicochemical properties typical for eumelanin, a contribution from pheomelanin with a substantial presence of benzothiazine subunits, was also evident. Importantly, the hiPSC-Mel pigment had significantly lower photoreactivity compared to bRPE melanin and PT-V hair melanin. Our findings indicate that hiPSC-Mel could be an excellent source of high-quality pigment for photoprotection studies. Full article
Show Figures

Figure 1

Back to TopTop