Table of Contents

Optics, Volume 1, Issue 1 (March 2020) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Open AccessArticle
Simultaneous Stereo PIV and MPS3 Wall-Shear Stress Measurements in Turbulent Channel Flow
Optics 2020, 1(1), 40-51; https://doi.org/10.3390/opt1010004 - 06 Jan 2020
Viewed by 175
Abstract
An extended experimental method is presented in which the micro-pillar shear-stress sensor (MPS 3 ) and high-speed stereo particle-image velocimetry measurements are simultaneously performed in turbulent channel flow to conduct concurrent time-resolved measurements of the two-dimensional wall-shear stress (WSS) distribution and the velocity [...] Read more.
An extended experimental method is presented in which the micro-pillar shear-stress sensor (MPS 3 ) and high-speed stereo particle-image velocimetry measurements are simultaneously performed in turbulent channel flow to conduct concurrent time-resolved measurements of the two-dimensional wall-shear stress (WSS) distribution and the velocity field in the outer flow. The extended experimental setup, which involves a modified MPS 3 measurement setup and data evaluation compared to the standard method, is presented and used to investigate the footprint of the outer, large-scale motions (LSM) onto the near-wall small-scale motions. The measurements were performed in a fully developed, turbulent channel flow at a friction Reynolds number R e τ = 969 . A separation between large and small scales of the velocity fluctuations and the WSS fluctuations was performed by two-dimensional empirical mode decomposition. A subsequent cross-correlation analysis between the large-scale velocity fluctuations and the large-scale WSS fluctuations shows that the streamwise inclination angle between the LSM in the outer layer and the large-scale footprint imposed onto the near-wall dynamics has a mean value of Θ ¯ x = 16 . 53 , which is consistent with the literature relying on direct numerical simulations and hot-wire anemometry data. When also considering the spatial shift in the spanwise direction, the mean inclination angle reduces to Θ ¯ x z = 13 . 92 . Full article
(This article belongs to the Special Issue Optical Diagnostics in Engineering)
Open AccessArticle
A Triple Correlator of Radiation Intensities of a Multimode Semiconductor Laser
Optics 2020, 1(1), 32-39; https://doi.org/10.3390/opt1010003 - 11 Dec 2019
Viewed by 213
Abstract
In this work, temporal correlations of radiation intensities of a multimode Fabry-Perot (FP) semiconductor laser are studied. Second- and third-order intensity correlation functions are measured both for the multimode FP laser and a pulsed Ti: Sapphire (TiSp) laser. Triple correlators of the latter [...] Read more.
In this work, temporal correlations of radiation intensities of a multimode Fabry-Perot (FP) semiconductor laser are studied. Second- and third-order intensity correlation functions are measured both for the multimode FP laser and a pulsed Ti: Sapphire (TiSp) laser. Triple correlators of the latter demonstrate an ordinary product of double correlators (the classic case). The behavior of the multimode laser is more complex and can indicate the quantum nature of optical field correlations. We follow a specific phenomenological formula for calculation of the triple temporal correlator. Full article
Show Figures

Figure 1

Open AccessArticle
Optical Properties of Alkali Halides in Ultraviolet Spectral Regions
Optics 2020, 1(1), 18-31; https://doi.org/10.3390/opt1010002 - 11 Dec 2019
Viewed by 180
Abstract
The optical reflectance spectra of alkali halide crystals KI and RbI were measured over the energy range of 4.14 to 6.91 eV. Both single crystal and poly-crystal samples were used to accomplish this task. The phase θ ( ω ) was computed using [...] Read more.
The optical reflectance spectra of alkali halide crystals KI and RbI were measured over the energy range of 4.14 to 6.91 eV. Both single crystal and poly-crystal samples were used to accomplish this task. The phase θ ( ω ) was computed using the Kramers-Kronig relation between the real and imaginary parts of the complex function, ln r = ln | r | + i θ ( ω ) . Subsequently, the optical constants n and κ were determined from the Fresnel reflectivity equation. The real and imaginary parts of dielectric constants ε 1 and ε 2 were then calculated using n and κ. The optical absorption spectra of the crystal have also been measured in these spectral regions. The spectra agree reasonably well with the current theory concerning exciton peaks. In addition, a shoulder was found in the spectra similar to those previously seen and associated with the band-to-band transition in the alkali iodides. Full article
Show Figures

Figure 1

Open AccessArticle
Investigation of Five Organic Dyes in Ethanol and Butanol for Two-Color Laser-Induced Fluorescence Ratio Thermometry
Optics 2020, 1(1), 1-17; https://doi.org/10.3390/opt1010001 - 11 Dec 2019
Viewed by 249
Abstract
In this article, we compare absorption and temperature-dependent fluorescence spectra of five organic dyes for 2c-LIF (two-color laser-induced fluorescence) thermometry in ethanol and butanol. The dyes fluorescein, eosin Y, rhodamine B, rhodamine 6G, and sulforhodamine 101 individually mixed in ethanol and butanol were [...] Read more.
In this article, we compare absorption and temperature-dependent fluorescence spectra of five organic dyes for 2c-LIF (two-color laser-induced fluorescence) thermometry in ethanol and butanol. The dyes fluorescein, eosin Y, rhodamine B, rhodamine 6G, and sulforhodamine 101 individually mixed in ethanol and butanol were studied at liquid temperatures of 25–65 °C. The self-absorption spectral bands are analyzed along with intensity ratios and the respective sensitivities for one-dye and two-dye 2c-LIF thermometry are deduced. For one-dye 2c-LIF, rhodamine B showed the highest sensitivity of 2.93%/°C and 2.89%/°C in ethanol and butanol, respectively. Sulforhodamine 101 and rhodamine 6G showed the least sensitivities of 0.51%/°C and 1.24%/°C in ethanol and butanol, respectively. For two-dye 2c-LIF, rhodamine B/sulforhodamine 101 exhibited the highest temperature sensitivities of 2.39%/°C and 2.54%/°C in ethanol and butanol, respectively. The dye pair eosin Y/sulforhodamine 101 showed the least sensitivities of 0.15%/°C and 0.27%/°C in ethanol and butanol, respectively. Full article
(This article belongs to the Special Issue Optical Diagnostics in Engineering)
Show Figures

Figure 1

Back to TopTop