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Abstract: In this work, temporal correlations of radiation intensities of a multimode Fabry-Perot
(FP) semiconductor laser are studied. Second- and third-order intensity correlation functions are
measured both for the multimode FP laser and a pulsed Ti: Sapphire (TiSp) laser. Triple correlators of
the latter demonstrate an ordinary product of double correlators (the classic case). The behavior of the
multimode laser is more complex and can indicate the quantum nature of optical field correlations.
We follow a specific phenomenological formula for calculation of the triple temporal correlator.
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1. Introduction

Measurements of light field intensity correlations in two different spatial-temporal points are
widely used in modern quantum optics. These correlations strongly depend on optical path difference
so the effect of an intensity correlation is often termed the intensity interference effect. The first
experiments on observations of such correlations for thermal sources of light were carried out by
Hanbury Brown and Twiss (HBT) [1]. Connection of the light field state and measurement correlations
of its intensities was established in [2–4]. From the outset it was clear that in addition to intensity
correlations in two spatial-temporal points the correlations in three, four, or a growing number of
such points can be considered. Theoretical formulas were derived for certain correlation functions of
the third and higher orders. However, the higher the order of the measurement correlator, the more
complex the experimental setup. For HBT correlators, the measurement signal is proportional to the
square of average light intensity 〈I〉2, while for the triple correlator, it is of the order 〈I〉3. Most light
sources are not bright enough, so measurements of high-order correlators require long integration
times to obtain a reasonable signal. This in turn sets high requirements for long-term light stability as
well as internal noises of light detectors. Lasers are the brightest light sources in laboratory settings.
The light field state of a single-mode laser working well above the lasing threshold is sufficiently
close to a coherent state, as studied by Roy J. Glauber [2]. In a coherent state, an intensity correlator
of any order should be equal to 1. Therefore, the study of high order correlators does not provide
fundamentally new information in this case. Experimental works have mainly dealt with the studying
of laser intensity correlations near a lasing threshold. Correlations of the pseudo-thermal light sources
produced by modulation of laser radiation have been otherwise studied. It has appeared that, besides
checking on theoretical conceptions, measurements of high-order correlators may be of considerable
interest for image transmission. In particular, third-order correlators are used for so called “ghost
imaging”, or “correlation imaging” [5,6]. This is a technique that produces images by combining
information from several light detectors. The question about the effect of the quantum nature of light
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on properties of observed correlators continues to attract interest as well [7]. Additionally, multimode
laser radiation is still insufficiently studied. So far, relatively little research has been carried out to
clarify the character of intermodal correlations. Such correlations may be both classical [8,9] and
quantum phenomena [10]. In this context, it was ascertained in our previous studies that different
longitudinal modes of a multimode Fabry-Perot (FP) semiconductor laser have unusual statistical
properties [11,12]. Herewith, there is a strong correlation between photons detected from different
longitudinal modes. The feature of quantum correlations is the effects of measurement on a quantum
system. For a quantum object, a probability density of a certain measurement outcome at the present
moment can depend on whether a previous measurement was performed just beforehand. In this
regard, a comprehensive notion of triple correlators could provide the means for an experiment which
tests the Leggett–Garg inequality [13]. This is a mathematical inequality fulfilled by all macrorealistic
physical theories. We hope that this work will enable us to progress forward in the understanding of
the nature of observed correlations in multimode lasers.

2. Experiments and Methods

In our experiments a standard continuous multimode semiconductor FP laser (model FPL-852+/−2
nm, Nolatech) was used. Laser units of this type are used for a wide range of research tasks
(high-precision optical measurements, quantum informatics, nonlinear gain, optical feedback, and
many others). The control unit Nolatech was used for laser pumping as well as temperature control
so that the laser internal temperature was always kept at 26 ◦C. The output power of the laser in our
experiments was about 30 mW. The spectrum of the laser is shown in Figure 1. It consists of a large
number (approximately 35) of longitudinal modes grouped into broad peaks corresponding to different
transverse modes. Every transverse mode contains up to 7 longitudinal ones with spacing of about
0.2 meV.
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Figure 1. Optical spectrum of the multimode semiconductor Fabry-Perot (FP) laser.

Using a double monochromator one can select a desired spectral range with which to study
the intensity correlation function either for a single longitudinal mode or for a chosen number of
such modes [11,12]. We have revealed that the intensity correlation function g(2) obtained by an
ordinary HBT scheme depends critically on the number of simultaneously selected modes. A detailed
description of the measurement procedure and the experimental setup has been reported in [11]. It
turned out that decreasing the number of simultaneously detected longitudinal modes leads to a
monotonic increase of the visibility (see Figure 2). Thereby, the g(2) functions show oscillations between
superbunching and antibunching regimes with a surprisingly high visibility and very long correlation
times. The visibility of the second-order correlation function is
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V =
g(2)max − g(2)min

g(2)max + g(2)min

, (1)

where g(2)
max and g(2)

min denote the maximum and minimum of the second-order correlation function.
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Figure 2. The intensity correlation functions g(2) obtained by an ordinary Hanbury Brown and Twiss
(HBT) setup. N is the number of simultaneously detected longitudinal modes shown in Figure 1.

The result shown in Figure 2 for N = 2 denotes V = 98%, i.e., there is a significant excess (65%)
above a classical value of V (for classical light, V cannot exceed 33% [7]). It seems that a substantial
share of quantum correlations occurs when the number of simultaneously detected longitudinal modes
noticeably decreases.

Furthermore, we have focused on measurements of third-order intensity correlation functions in
the hope that these measurements will provide more information about the nature of the correlations
observed. We took note that these measurements exploit similar ideas to the Leggett-Garg temporal
inequalities (the combination of three two-time correlations) [13]. To illustrate the effect of a
measurement on the quantum state, we refer to an experimental setup for measuring the g(3) correlator
which has been published previously [12]. It is shown in Figure 3.

Radiation of the multimode semiconductor laser was attenuated by a neutral filter and was
focused into the fiber, after which it was directed onto the entrance slit of a double grating
monochromator MDR-6U (1200 lines/mm) with additive dispersion. Entrance and intermediate
slits of the monochromator were almost completely closed (width L = 5 mkm). This allowed for
the extracting of a single longitudinal mode in the optical spectrum at the wavelength λ = 852.2 nm.
The combined effect of the neutral filter and monochromator allowed for the attenuating of the laser
radiation to a level acceptable for single photon avalanche diodes, i.e., no more than 2 × 105 counts per
second. This combination provides the highest possible spectral-time resolution. The 400 mkm-fiber
end face served as an exit slit. Furthermore, the signal was distributed between the three avalanche
diodes (D1, D2, and D3) by means of two fiber splitters. Optical paths from the monochromator to
each of the avalanche diodes were equalized to accuracy no worse than 50 cm. The discriminator DS1
of the first avalanche diode produced a standard NIM pulse (a fast negative logic signal −800 mV into
50-Ω impedance; pulse width: nominally 5 ns) simultaneously with a gate pulse (a running time of
δ = 8 ns) which was sent to the Gate input of a time-to-amplitude converter (TAC). The pulse from
discriminator DS2 of the avalanche diode D2 was sent to the Start input of TAC, which was stopped
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by means of a pulse of the discriminator DS3 (the Stop input). The shortest time resolution of the
system was about 300 ps. The characteristic integration time in one experiment was 1.6 × 104 s. The
experimental setup registered an event if the three following conditions had been fulfilled: (1) the
diode D1 response, (2) the arrival of the D2 pulse within the time window δ = 8 ns, and (3) the diode
D3 response. The probability of this event is proportional to the normalized g(3) correlator:

g(3) =
〈
I(t1)I(t2)I(t3)

〉
〈I〉3

. (2)
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are optical fibers. NF is a neutral density filter. D1, D2, and D3 are single photon detectors (silicon
avalanche photodiodes). DS1, DS2, and DS3 are discriminators. DL is a delay line; TAC (ORTEC) is a
time-to amplitude converter which measures the time interval between pulses to its Start and Stop
inputs and generates an analog output pulse proportional to the measured time.

3. Results

We can see that the probability in Formula (2) is proportional to a product of intensities measured
in three different moments in time. It should be noted that the difference between quantum efficiencies
of the detectors and the nonideality of the splitting of light flux into three beams does not play an
important role for a normalized correlator. The registering of photon counts is a stationary random
process. This is evident in the experiments while repeatedly measuring the same correlators and mean
intensities as well. Herewith, we can see that values of these variables do not vary with time. We know
that the probability of a stationary random process may be dependent only on difference in time or
from relative time delays. In our case these are variables ∆ and τ, where the first represents the time
delay of a gate pulse (the Gate input) relative to the pulse D1 and the second the time delay between
the Start and Stop pulses. So, g(3) = g(3)(∆, τ). When ∆ significantly exceeds the decaying time of the
second-order correlator g(2), one can suggest that the non-normalized third-order correlator G(3) should
be equal to a product of second-order correlators, i.e.,

G(3)(∆, τ) = G(2)(∆)G(2)(τ)G(2)(τ+ ∆). (3)

In order to verify Formula (3), we used a pulsed Ti: Sapphire (TiSp) laser “Millennia”
(Spectra-Physics) which produced periodic pulses with the period TTiSp = 125 ns and pulse width τTiSp

= 2 ps (the spectral width 1.2 meV). The energy of the laser quantum was 1.459 eV. In this case, the
intensity of light was a periodic function with the period TTiSp. The function G(2) was also a periodic
function, i.e.,

G(2)
(
τ+ TTiSp

)
= G(2)(τ). (4)
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Figure 4 shows that triple correlators are actually an ordinary product of G(2) correlators and the
result is in good agreement with Formula (3).

Optics 2019, 1, FOR PEER REVIEW 5 

represents the time delay of a gate pulse (the Gate input) relative to the pulse D1 and the second the 
time delay between the Start and Stop pulses. So, g(3) = g(3)(∆, τ). When ∆ significantly exceeds the 
decaying time of the second-order correlator g(2), one can suggest that the non-normalized third-order 
correlator G(3) should be equal to a product of second-order correlators, i.e., 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ΔττΔτΔ += 2223 GGG,G . (3)

In order to verify Formula (3), we used a pulsed Ti: Sapphire (TiSp) laser “Millennia” (Spectra-
Physics) which produced periodic pulses with the period TTiSp = 125 ns and pulse width τTiSp = 2 ps 
(the spectral width 1.2 meV). The energy of the laser quantum was 1.459 eV. In this case, the intensity 
of light was a periodic function with the period TTiSp. The function G(2) was also a periodic function, 
i.e., 

( ) ( ) ( ) ( )ττ 22 GTG TiSp =+ . (4)

Figure 4 shows that triple correlators are actually an ordinary product of G(2) correlators and the 
result is in good agreement with Formula (3). 

In particular, for ∆ = TTiSp, Formula (3) shows that the function G(3) is simply G(2)(τ)-squared, i.e., 

( ) ( ) ( ) ( ) ( ) ( )[ ]2223 0 ττ GG,TG TiSp = , 

 
(5)

and for τ = 0, the function G(3)(0, 0) = [G(2)(0)]3. In the experiment, the triple correlator actually increases 
significantly (G(3) ~ 1000) under these conditions and compares with [G(2)(0)]3 (see Figure 4c). 

However, the experiments with a multimode laser showed that the behavior of the triple 
correlator is quite different. It has an oscillating character with high visibility as well as the double 
correlator, but has two main maxima (see Figure 5, [12]). 

 
 

Figure 4. (a) The double correlator G(2)(τ) as a function of delay τ and (b–d) the triple correlator G(3)(τ) 
at different values of Δ. The double peak shape of the laser line was a result of an apparatus function. 

Figure 4. (a) The double correlator G(2)(τ) as a function of delay τ and (b–d) the triple correlator G(3)(τ)
at different values of ∆. The double peak shape of the laser line was a result of an apparatus function.

In particular, for ∆ = TTiSp, Formula (3) shows that the function G(3) is simply G(2)(τ)-squared, i.e.,

G(3)
(
TTiSp, τ

)
= G(2)(0)

[
G(2)(τ)

]2
, (5)

and for τ = 0, the function G(3)(0, 0) = [G(2)(0)]3. In the experiment, the triple correlator actually
increases significantly (G(3) ~ 1000) under these conditions and compares with [G(2)(0)]3 (see Figure 4c).

However, the experiments with a multimode laser showed that the behavior of the triple correlator
is quite different. It has an oscillating character with high visibility as well as the double correlator, but
has two main maxima (see Figure 5, [12]).

The fitting of these results by a product of double correlators (Formula (5)) is in bad agreement with
experimental data [12]. Here, there is one aspect that we consider important to highlight. Quantum
measurement theory implies that each measurement prepares a new state of the quantum system,
i.e., it has an impact on the outcome of the subsequent measurement. At the same time, owing to the
principle of causality, later measurements cannot affect the earlier outcomes. These circumstances
mean that a simple product of double correlators is not working in that particular case and we need a
specific empirical formula for calculating the triple correlator that was found (Formula (8) in [12]). The
key component of the new formula is the Heaviside step function formula which characterizes the so
called “quantum jump” (see the Discussion section). The results of calculations in accordance with
such a formula which includes the Θ factor are in good agreement with the experimental data (see
Figure 6).
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4. Discussion

The fittings presented in Figure 6 include the following points. In the scheme proposed by us, each
measurement, i.e., photon registration, is followed by quantum state reduction. The delay between
the detection of photons 1 and 2 is rigidly set by the experimental conditions. If photon 3 is detected
within the time interval between the detection of photons 1 and 2, then it obviously destroys the free
time evolution of an initial quantum state. At that, the triple correlator should be described by the
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product of correlators 1–3 and 3–2. If photon 3 is detected before photon 1 then it cannot correlate with
photon 2, as all correlations are destroyed by quantum state reduction in connection with the detection
of photon 1. Analogical reasoning is true for a case when photon 3 comes after photon 2. It therefore
follows that there is a strong correlation between photons detected from different laser modes. We
used an empirical formula, Formula (8) presented in [12], which includes the Heaviside step function
Θ, for calculating the triple correlator of such a system. This function follows up the quantum state
reduction which is called a “quantum jump”. We have used this term in order to demonstrate that
experimental curves are well described using the formula containing the stepwise component. In turn,
the results mentioned above could probably be interpreted from the point of view of the theory of
quantum jumps [14]. This could consider explicitly giving the quantum jump operator which would
predict outcomes of that kind. In addition, the recently developed theory of past quantum states [15,16]
provides new possibilities in the analysis of correlations in the system described, which would provide
a rigorous theoretical framework for further experiments.

5. Conclusions

Given the above, the measurements of third-order g(3) intensity correlation functions (triple
correlators) of a multimode semiconductor Fabry-Perot laser could provide additional and very useful
information on states of the optical field in comparison with an ordinary Hanbury Brown and Twiss
technique. Comparative measurements of triple correlators were carried out in this work for two cases:
that using a multimode FP laser and a pulsed TiSp laser. These experiments have shown that the use
of the latter results in a classical picture of correlations: the triple correlators are an ordinary product
of double correlators. In the case of the multimode laser, the situation is more complex. There are a
number of distinctive features of the g(3) functions, indicating that it is necessary to take into account
the dependence of the measurements outcome from a quantum state. The g(3) functions oscillate
between superbunching and antibunching regimes with a surprisingly high visibility and very long
correlation times as well as g(2) functions. The visibility shows a significant excess above a classical
value. It was revealed that g(3) functions are not described by a simple product of double correlators
g(2) under such conditions. In that case, we follow a specific phenomenological formula, as given
in [12], which includes the Heaviside step function Θ characterizing the quantum state reduction (a
“quantum jump”). The results of calculations in accordance with such a formula are in good agreement
with the experimental data. Quantum correlations of a multimode semiconductor laser reveal new
ways to understand the mechanisms of an intermodal coupling and could provide new opportunities
in quantum optics and applications. An intriguing fact is that all these effects were observed at
room temperature.
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