Micro- and Macro-Scale Measurement of Flow Velocity in Porous Media: A Shadow Imaging Approach for 2D and 3D
Abstract
:1. Introduction
2. Experimental Setup and Methods
2.1. Test Cell
2.2. Imaging System
2.3. Porous Media
2.4. Refractive Index Matching Procedure
2.5. Test Liquid and Seeding Particles
2.6. Image Processing Method
2.7. Velocimetry Procedure
3. Results and Discussion
3.1. Macro-Scale 2D Velocimetry
3.2. Micro-Scale 3D Velocimetry
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wood, B.; Apte, S.; Liburdy, J.; Ziazi, R.; He, X.; Finn, J.; Patil, V. A comparison of measured and modeled velocity fields for a laminar flow in a porous medium. Adv. Water Resour. 2015, 85, 45–63. [Google Scholar] [CrossRef] [Green Version]
- Khaled, A.; Vafai, K. The role of porous media in modeling flow and heat transfer in biological tissues. Int. J. Heat Mass Transf. 2003, 46, 4989–5003. [Google Scholar] [CrossRef]
- Sahimi, M.; Imdakm, A.O. Hydrodynamics of particulate motion in porous media. Phys. Rev. Lett. 1991, 66, 1169–1172. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Babadagli, T. 3-D visualization of diffusive and convective solvent transport processes in oil-saturated porous media using laser technology. J. Vis. 2016, 19, 615–629. [Google Scholar] [CrossRef]
- Roth, E.; Mont-Eton, M.E.; Lei, T.C.; Gilbert, B.; Mays, D. Measurement of colloidal phenomena during flow through refractive index matched porous media. Rev. Sci. Instrum. 2015, 86, 113103. [Google Scholar] [CrossRef] [Green Version]
- Vafayi, K. Porous Media: Applications in Biological Systems and Biotechnology; Taylor & Francis Group: Abingdon, UK, 2011. [Google Scholar]
- Ryan, J.N.; Elimelech, M. Colloid mobilization and transport in groundwater. Colloids Surf. A Physicochem. Eng. Asp. 1996, 107, 1–56. [Google Scholar] [CrossRef]
- Tilke, P.G.; Holmes, D.W.; Williams, J.R. Characterizing Flow in Oil Reservoir Rock Using Smooth Citation Accessed Characterizing Flow in Oil Reservoir Rock Using Smooth Particle Hydrodynamics. AIP Conf. Proc. 2010, 1254, 278–283. [Google Scholar]
- Reis, A.H.; Miguel, A.F. Transport and Deposition of Fine Mode Particles in Porous Filters. J. Porous Media 2006, 9, 731–744. [Google Scholar] [CrossRef]
- Huang, L.; Mikolajczyk, G.; Küstermann, E.; Wilhelm, M.; Odenbach, S.; Dreher, W. Adapted MR velocimetry of slow liquid flow in porous media. J. Magn. Reson. 2017, 276, 103–112. [Google Scholar] [CrossRef]
- Roth, E.; Gilbert, B.; Mays, D. Colloid Deposit Morphology and Clogging in Porous Media: Fundamental Insights Through Investigation of Deposit Fractal Dimension. Environ. Sci. Technol. 2015, 49, 12263–12270. [Google Scholar] [CrossRef] [Green Version]
- Vafai, K. Handbook of Porous Media, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Wiederseiner, S. Rheophysics of Concentrated Particle Suspensions in a Couette Cell using a Refractive Index Matching Technique; EPFL: Lausanne, Switzerland, 2010; p. 161. [Google Scholar]
- Khalili, A.; Basu, A.J.; Pietrzyk, U. Flow visualization in porous media via Positron Emission Tomography. Phys. Fluids 1998, 10, 1031–1033. [Google Scholar] [CrossRef]
- Werth, C.J.; Zhang, C.; Brusseau, M.L.; Oostrom, M.; Baumann, T. A review of non-invasive imaging methods and applications in contaminant hydrogeology research. J. Contam. Hydrol. 2010, 113, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, R.J.; Sederman, A.; Mantle, M.D.; Crawshaw, J.; Johns, M.L. A comparison of experimental and simulated propagators in porous media using confocal laser scanning microscopy, lattice Boltzmann hydrodynamic simulations and nuclear magnetic resonance. Magn. Reson. Imaging 2005, 23, 355–357. [Google Scholar] [CrossRef] [PubMed]
- Liyanage, R.; Cen, J.; Krevor, S.; Crawshaw, J.P.; Pini, R. Multidimensional Observations of Dissolution-Driven Convection in Simple Porous Media Using X-ray CT Scanning. Transp. Porous Media 2018, 126, 355–378. [Google Scholar] [CrossRef] [Green Version]
- Dijksman, J.A.; Rietz, F.; Lőrincz, K.A.; Van Hecke, M.; Losert, W. Invited Article: Refractive index matched scanning of dense granular materials. Rev. Sci. Instrum. 2012, 83, 11301. [Google Scholar] [CrossRef]
- Häfeli, R.; Altheimer, M.; Butscher, D.; Von Rohr, P.R. PIV study of flow through porous structure using refractive index matching. Exp. Fluids 2014, 55, 1717. [Google Scholar] [CrossRef]
- Frey, J.M.; Schmitz, P.; Dufrêche, J.; Pinheiro, I.G. Particle Deposition in Porous Media: Analysis of Hydrodynamic and Weak Inertial Effects. Transp. Porous Media 1999, 37, 25–54. [Google Scholar] [CrossRef]
- Harshani, H.M.D.; Torres, S.A.G.; Scheuermann, A.; Muhlhaus, H.B. Experimental study of porous media flow using hydro-gel beads and LED based PIV. Meas. Sci. Technol. 2016, 28, 15902. [Google Scholar] [CrossRef]
- Wiederseiner, S.; Andreini, N.; Epely-Chauvin, G.; AnceyiD, C. Refractive-index and density matching in concentrated particle suspensions: A review. Exp. Fluids 2010, 50, 1183–1206. [Google Scholar] [CrossRef]
- Wright, S.F.; Zadrazil, I.; Markides, C.N. A review of solid–fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid–liquid and multiphase solid–liquid flows. Exp. Fluids 2017, 58, 108. [Google Scholar] [CrossRef]
- Beguin, R.; Philippe, P.; Faure, Y. Pore-Scale Flow Measurements at the Interface between a Sandy Layer and a Model Porous Medium: Application to Statistical Modeling of Contact Erosion. J. Hydraul. Eng. 2013, 139, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Stöhr, M.; Roth, K.; Jähne, B. Measurement of 3D pore-scale flow in index-matched porous media. Exp. Fluids 2003, 35, 159–166. [Google Scholar] [CrossRef]
- Krummel, A.T.; Datta, S.; Münster, S.; Weitz, D.A. Visualizing multiphase flow and trapped fluid configurations in a model three-dimensional porous medium. AIChE J. 2013, 59, 1022–1029. [Google Scholar] [CrossRef]
- Holzner, M.; Morales, V.; Willmann, M.; Dentz, M. Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow. Phys. Rev. E 2015, 92, 013015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moroni, M.; Cushman, J.H.; Cenedese, A. Application of Photogrammetric 3D-PTV Technique to Track Particles in Porous Media. Transp. Porous Media 2008, 79, 43–65. [Google Scholar]
- Guo, T.; Ardekani, A.M.; Vlachos, P.P. Microscale, scanning defocusing volumetric particle-tracking velocimetry. Exp. Fluids 2019, 60, 89. [Google Scholar] [CrossRef]
- Cierpka, C.; Kähler, C.J. Particle imaging techniques for volumetric three-component (3D3C) velocity measurements in microfluidics. J. Vis. 2011, 15, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, T.; Hain, R.; Kähler, C.J. In situcalibrated defocusing PTV for wall-bounded measurement volumes. Meas. Sci. Technol. 2016, 27, 084005. [Google Scholar] [CrossRef]
- Cavazzini, G. The Particle Image Velocimetry—Characteristics, Limits and Possible Applications; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Agrawal, Y.K.; Sabbagh, R.; Sanders, S.; Nobes, D. Measuring the Refractive Index, Density, Viscosity, pH, and Surface Tension of Potassium Thiocyanate (KSCN) Solutions for Refractive Index Matching in Flow Experiments. J. Chem. Eng. Data 2018, 63, 1275–1285. [Google Scholar] [CrossRef]
- University of Liverpool, Absolute Refractive Index; Materials Teaching Educational Resources. 2007. Available online: https://web.archive.org/web/20071012161040/http://matter.org.uk/schools/Content/Refraction/absolute.html (accessed on 25 February 2020).
- Parson, L.; (Chemglass Life Sciences LLC, Vineland, NJ, USA). Properties of Borosicate Glass Bead. Personal communication, 2014. [Google Scholar]
- Wang, Z.; Bovik, A. Modern Image Quality Assessment. Synth. Lect. Image Video Multimed. Process. 2006, 2, 1–156. [Google Scholar] [CrossRef]
- Patil, V.A.; Liburdy, J.A. Characterization of PIV Seed Particles for Flow in Porous Media. In Proceedings of the Processing and Engineering Applications of Novel Materials, Vancouver, BC, Canada, 12–18 November 2010; Volume 12, pp. 485–493. [Google Scholar]
- Ventura Foods. Ventura Foods Canola Oil Safety Data Sheet. 2015, pp. 1–7. Available online: https://www.venturafoods.com/wp-content/uploads/2019/03/VF-SDS-Canola-Oil.pdf (accessed on 25 February 2020).
- Benson, T.; French, J. InSiPID: A new low-cost instrument for in situ particle size measurements in estuarine and coastal waters. J. Sea Res. 2007, 58, 167–188. [Google Scholar] [CrossRef]
- Keane, R.D.; Adrian, R.J. Theory of cross-correlation analysis of PIV images. Flow Turbul. Combust. 1992, 49, 191–215. [Google Scholar] [CrossRef]
- Kazemi, M.A.; Elliott, J.A.W.; Nobes, D.S. Determination of the three components of velocity in an evaporating liquid from scanning PIV. In Proceedings of the 18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics, Lisbon, Portugal, 4–7 July 2016. [Google Scholar]
- Reeves, G. Smooth2a Function v. 1.0 MATLAB File Exchange. Available online: https://www.mathworks.com/matlabcentral/fileexchange/23287-smooth2a (accessed on 13 March 2009).
Plane | Depth (mm) |
---|---|
a | 0.24 |
b | 0.34 |
c | 0.44 |
d | 0.54 |
e | 0.64 |
f | 0.74 |
Parameter | Description |
---|---|
Physical state | Transparent liquid |
Water solubility | Insoluble |
Color | Light yellow |
Flash point | >325 °C |
Boiling point | No data available |
Ignition point | >330 °C |
Vapor pressure | <0.1 mmHg at 300 °C |
Viscosity | 43 mPa·s at 35 °C |
Specific gravity | 0.920–0.925 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabbagh, R.; Kazemi, M.A.; Soltani, H.; Nobes, D.S. Micro- and Macro-Scale Measurement of Flow Velocity in Porous Media: A Shadow Imaging Approach for 2D and 3D. Optics 2020, 1, 71-87. https://doi.org/10.3390/opt1010006
Sabbagh R, Kazemi MA, Soltani H, Nobes DS. Micro- and Macro-Scale Measurement of Flow Velocity in Porous Media: A Shadow Imaging Approach for 2D and 3D. Optics. 2020; 1(1):71-87. https://doi.org/10.3390/opt1010006
Chicago/Turabian StyleSabbagh, Reza, Mohammad Amin Kazemi, Hirad Soltani, and David S. Nobes. 2020. "Micro- and Macro-Scale Measurement of Flow Velocity in Porous Media: A Shadow Imaging Approach for 2D and 3D" Optics 1, no. 1: 71-87. https://doi.org/10.3390/opt1010006
APA StyleSabbagh, R., Kazemi, M. A., Soltani, H., & Nobes, D. S. (2020). Micro- and Macro-Scale Measurement of Flow Velocity in Porous Media: A Shadow Imaging Approach for 2D and 3D. Optics, 1(1), 71-87. https://doi.org/10.3390/opt1010006