Solid State Optical Microlasers Fabrication via Microfluidic Channels
Abstract
:1. Introduction
2. Experiments and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Strekalov, D.V.; Marquardt, C.; Matsko, A.B.; Schwefel, H.G.L.; Leuchs, G. Nonlinear and quantum optics with whispering gallery resonators. J. Opt. 2016, 18, 123002. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Jiang, X.; Zhao, G.; Yang, L. Whispering gallery mode microresonator for nonlinear optics. arXiv 2018, arXiv:1809.04878. [Google Scholar]
- Hsu, H.-S.; Cai, C.; Armani, A.M. Ultra-low-threshold Er:Yb sol-gel microlaser on silicon. Opt. Express 2017, 17, 23265–23271. [Google Scholar] [CrossRef] [Green Version]
- Manzo, M. Temperature compensation of dye doped polymeric microscale lasers. J. Polym. Sci. Part B 2017, 55, 789–792. [Google Scholar] [CrossRef]
- Cavazos, O.; Manzo, M.; Ramírez-Cedillo, E.; Siller, H.R. Bone-Integrated Optical Microlasers for In-Vivo Diagnostic Biomechanical Performances. In Proceedings of the ASME 2019 International Mechanical Engineering Congress and Exposition, Salt Lake City, UT, USA, 11–14 November 2019. [Google Scholar]
- Savchenkov, A.A.; Matsko, A.B.; Strekalov, D.; Ilchenko, V.S.; Maleki, L. Mode filtering in optical whispering gallery resonators. Electron. Lett. 2005, 41, 1. [Google Scholar] [CrossRef]
- Matsko, A.B.; Liang, W.; Savchenkov, A.; Ilchenko, V.; Seidel, D.; Maleki, L. Multi-octave tunable agile RF photonic filters. In Proceedings of the 2012 IEEE International Topical Meeting on Microwave Photonics, Noordwijk, The Netherlands, 11–14 September 2012. [Google Scholar]
- Foreman, M.R.; Swaim, J.D.; Vollmer, F. Whispering gallery mode sensors. Adv. Opt. Photonics 2015, 7, 168–240. [Google Scholar] [CrossRef]
- Manzo, M.; Ioppolo, T. Untethered photonic sensor for wall pressure measurement. Opt. Lett. 2015, 40, 2257–2280. [Google Scholar] [CrossRef]
- Manzo, M.; Ioppolo, T.; LaPenna, V.; Ayaz, U.; Otugen, V. A photonic wall pressure sensor for fluid mechanics applications. Rev. Sci. Instrum. 2012, 83, 105003. [Google Scholar] [CrossRef]
- Xu, X.; Chen, W.; Zhao, G.; Li, Y.; Lu, C.; Yang, L. Wireless whispering-gallery mode sensor for thermal sensing and aerial mapping. Light Sci. Appl. 2018, 62, 1–6. [Google Scholar] [CrossRef]
- Rosenblum, S.; Lovsky, Y.; Arazi, L.; Vollmer, F.; Dayan, B. Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators. Nat. Commun. 2015, 6, 6788. [Google Scholar] [CrossRef]
- Kuwata-Gonokami, M.; Takeda, K. Polymer whispering gallery mode lasers. Opt. Mater. 1998, 9, 12–17. [Google Scholar] [CrossRef]
- Savchenkov, A.A.; Ilchenko, V.S.; Matsko, A.B.; Maleki, L. Kilohertz optical resonances in dielectric crystal cavities. Phys. Rev. A 2004, 70, 051804. [Google Scholar] [CrossRef]
- Falconi, M.C.; Starecki, F.; Nazabal, V.; Bodiou, L.; Dumeige, Y.; Lemaitre, J.; Charrier, J.; Prudenzano, F. Design of rare-earth doped chalcogenide microresonators for biosensing in Mid-IR. In Proceedings of the 2016 18th International Conference on Transparent Optical Networks (ICTON), Trento, Italy, 10–14 July 2016. [Google Scholar]
- Ta, V.D.; Chen, R.; Sun, H.D. Tuning whispering gallery mode lasing from self-assembled Polymer droplets. Sci. Rep. 2013, 3, 1362. [Google Scholar] [CrossRef]
- Gayral, B.; Gérard, J.M.; Lemaitre, A.; Dupuis, C.; Manin, L.; Pelouard, J.L. High-Q wet-etched GaAs microdisks containing InAs quantum boxes. Appl. Phys. Lett. 1999, 75, 1908–1910. [Google Scholar] [CrossRef]
- Brenner, P.; Bar-On, O.; Siegle, T.; Leonhard, T.; Gvishi, R.; Eschenbaum, C.; Kalt, H.; Scheuer, J.; Lemmer, U. 3D whispering-gallery mode microlasers by direct laser writing and subsequent soft nanoimprint lithography. Appl. Opt. 2017, 56, 3703–3708. [Google Scholar] [CrossRef]
- Matsko, A.B.; Savchenkoc, A.A.; Ilchenko, V.S.; Seidel, D.; Maleki, L. Optomechanics with surface-acoustic wave whispering-gallery modes. Phys. Rev. Lett. 2009, 103, 257403. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Baker, C.; Senellart, P.; Lemaitre, A.; Ducci, S.; Leo, G.; Favero, I. Wavelength-sized GaAs optomechanical resonators with gigahertz frequency. Appl. Phys. Lett. 2011, 98, 113108. [Google Scholar] [CrossRef] [Green Version]
- Kippenberg, T.J.; Vahala, K.J. Cavity optomechanics: Back-action at the mesoscale. Science 2008, 321, 1172–1176. [Google Scholar] [CrossRef] [Green Version]
- Manzo, M.; Cavazos, O. Neurotransducers Based Voltage Sensitive Dye-Doped Microlasers. In Proceedings of the Biophotonics Congress: Optics in the Life Sciences Congress 2019, Tucson, AZ, USA, 15–17 April 2019. [Google Scholar]
- Manzo, M.; Olokodana, I.L. Emission Spectrum Denoising Algorithm for Microlasers-Based Neurotransducers. In Proceedings of the OSA Advanced Photonics Congress (AP) 2019, Burlingame, CA, USA, 29 July–1 August 2019. [Google Scholar]
- Zhao, L.; Wang, Y.; Yuan, Y.; Liu, Y.; Liu, S.; Sun, W.; Yang, J.; Li, H. Whispering gallery mode laser based on cholesteric liquid crystal microdroplets as temperature sensor. Opt. Commun. 2017, 402, 181–185. [Google Scholar] [CrossRef]
- Tang, S.K.Y.; Li, Z.; Abate, A.R.; Agresti, J.J.; Weitz, D.A.; Psaltis, D.; Whitesides, G.M. A multi-color fast-switching microfluidic droplet dye laser. Lab Chip 2009, 9, 2767–2771. [Google Scholar] [CrossRef] [Green Version]
- Kuehne, A.J.C.; Gather, M.C.; Evdelnant, I.A.; Yun, S.-H.; Weitz, D.A.; Wheeler, A.R. A Switchable digital microfluidic droplet dye-laser. Lab Chip 2011, 11, 3716–3719. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Zhi, M.; Chan, Y.; Khan, S.A. Embedding liquid lasers within or around aqueous microfluidic droplets. Lab Chip 2018, 18, 197–205. [Google Scholar] [CrossRef]
- Tang, S.K.Y.; Derda, R.; Quan, Q.; Lončar, M.; Whitesides, G.M. Continuously tunable microdroplet-laser in a microfluidic channel. Opt. Express 2011, 19, 2204–2215. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, L.; Zhu, Z.; Zhang, Y.; Wei, Y.; Zhang, X.; Zhao, E.; Zhang, Y.; Yang, J.; Yuan, L. Whispering gallery mode temperature sensor of liquid microresonator. Opt. Lett. 2016, 41, 4649–4652. [Google Scholar] [CrossRef]
- Ma, S.; Thiele, J.; Bai, Y.; Abell, C.; Huck, W.T.S. Fabrication of microgel particles with complex shape via selective polymerization of aqueous two-phase systems. Small 2012, 8, 2356–2360. [Google Scholar] [CrossRef]
- Morris, V.B.; Nimbalkar, S.; Younesi, M.; McClellan, P.; Akkus, O. Mechanical properties, cytocompatibility and manufacturability of chitosan: PEGDA hybrid-gel scaffolds by stereolithography. Ann. Biomed. Eng. 2017, 45, 286–296. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manzo, M.; Cavazos, O. Solid State Optical Microlasers Fabrication via Microfluidic Channels. Optics 2020, 1, 88-96. https://doi.org/10.3390/opt1010007
Manzo M, Cavazos O. Solid State Optical Microlasers Fabrication via Microfluidic Channels. Optics. 2020; 1(1):88-96. https://doi.org/10.3390/opt1010007
Chicago/Turabian StyleManzo, Maurizio, and Omar Cavazos. 2020. "Solid State Optical Microlasers Fabrication via Microfluidic Channels" Optics 1, no. 1: 88-96. https://doi.org/10.3390/opt1010007
APA StyleManzo, M., & Cavazos, O. (2020). Solid State Optical Microlasers Fabrication via Microfluidic Channels. Optics, 1(1), 88-96. https://doi.org/10.3390/opt1010007