An Archaeoacoustics Analysis of Cistercian Architecture: The Case of the Beaulieu Abbey
Abstract
:1. Introduction
1.1. Cistercian and Gothic Architecture
1.2. Reverberation Time
1.3. C50-C80
1.4. Speech Transmission Index (STI)
2. Materials and Methods
2.1. Establishing the Internal Dimensions
2.2. Model Complexity
2.3. Absorption and Scattering Coefficients
2.3.1. Absorption Coefficients
2.3.2. Scattering Coefficients
2.4. Sound Sources and Receivers
2.4.1. Scenario 1: Pulpit to Nave
2.4.2. Scenario 2: Altar to Quire
2.4.3. Scenario 3: Quire to Nave
2.5. CATTAcoustic Calculation Settings
3. Results
3.1. Reverberation Time (RT) rResults
3.2. C50 Results
3.3. STI Results
4. Discussions
4.1. RT Considerations
4.2. C50/C80 Considerations
4.3. STI Considerations
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tjellesen, L.L.; Colligan, K. Archaeoacoustics: An Introduction—A New Take on an Old Science. In Audio Engineering Society Convention 134; Audio Engineering Society: New York, NY, USA, 2013. [Google Scholar]
- Suárez, R.; Alonso, A.; Sendra, J.J. Archaeoacoustics of intangible cultural heritage: The sound of the Maior Ecclesia of Cluny. J. Cultr. Herit. 2016, 19, 567–572. [Google Scholar] [CrossRef]
- Magrini, U.; Magrini, A. Measurements of acoustical properties in Cistercian Abbeys. Build. Acoust. 2005, 12, 255–264. [Google Scholar] [CrossRef]
- Magrini, A.; Magrini, U. Acoustic field in two Medieval Abbeys: Relationships between acoustical parameters and architecture in Morimondo and Chiaravalle Abbeys. Forum Acust. 2005, 4, 2381–2386. [Google Scholar]
- Meyer, J. Acoustics of gothic churches. In Proceedings of the Forum Acusticum 2002, Sevilla, Spain, 16–20 September 2002. [Google Scholar]
- Butler, L.; Given-Wilson, C. Medieval Monasteries of Great Britain; Michael Joseph: Upper Clapton, UK, 1983. [Google Scholar]
- Doubleday, H.A.; Page, W. A History of the County of Hampshire; Victoria County History: London, UK, 1903. [Google Scholar]
- Hope, W.J.S.; Brakspear, H. The Cistercian Abbey of Beaulieu, in the County of Southampton. Archaeol. J. 1906, 63, 129–186. [Google Scholar] [CrossRef]
- Álvarez-Morales, L.; Zamarreño, T.; Girón, S.; Galindo, M. A methodology for the study of the acoustic environment of Catholic cathedrals: Application to the Cathedral of Malaga. Build. Environ. 2014, 72, 102–115. [Google Scholar] [CrossRef]
- Álvarez-Morales, L.; Lopez, M.; Álvarez-Corbacho, A. The Acoustic Environment of York Minster’s Chapter House. Acoustics 2020, II, 3. [Google Scholar] [CrossRef] [Green Version]
- Martellotta, F. Understanding the acoustics of Papal Basilicas in Rome by means of a coupled-volumes approach. J. Sound Vib. 2016, 382, 413–427. [Google Scholar] [CrossRef]
- Desarnaulds, V.; Carvalho, A.P.O.; Monay, G. Church acoustics and the influence of occupancy. Build. Acoust. 2002, 9, 29–47. [Google Scholar] [CrossRef] [Green Version]
- Lubman, D.; Kiser, B.H. The history of Western civilization told through the acoustics of its worship spaces. In Proceedings of the 17th International Congress on Acoustics, Rome, Italy, 2–7 September 2001. [Google Scholar]
- ISO. EN, 3382. Acoustics–Measurement of Room Acoustic Parameters–Part 1: Performance Spaces; ISO: Geneva, Switzerland, 2009; Part 1. [Google Scholar]
- Alvarez-Morales, L.; Giron, S.; Galindo, M.; Zamarreno, T. Acoustic environment of Andalusian cathedrals. Build. Environ. 2016, 103, 182–192. [Google Scholar] [CrossRef]
- Alvarez-Morales, L.; Lopez, M.; Alvarez-Corbacho, A.; Bustamante, P. Mapping the Acoustics of Ripon Cathedral; Universitätsbibliothek der RWTH Aachen: Aachen, Germany, 2019. [Google Scholar]
- Ahnert, W.; Schmidt, W. Appendix to EASERA Manual: Fundamentals to Perform Acoustical Measurements. 2005, pp. 1–53. Available online: https://www.semanticscholar.org/paper/Fundamentals-to-perform-acoustical-measurements-Ahnert/3e00dfaa0b8e3eda94da4469d9b5c71e5b0b8cd6 (accessed on 24 March 2021).
- BS EN ISO 60268-16. Sound System Equipment. Objective Rating of Speech Intelligibility by Speech Transmission Index; British Standards Publications: London, UK, 1998. [Google Scholar]
- De Sant’Ana, D.Q.; Paulo Henrique Trombetta, Z. Acoustic evaluation of a contemporary church based on in situ measurements of reverberation time, definition, and computer-predicted speech transmission index. Build. Environ. 2011, II, 511–517. [Google Scholar] [CrossRef]
- Galindo, M.; Zamarreno, T.; Giron, S. Acoustic simulations of Mudejar-Gothic churches. J. Acoust. Soc. Am. 2009, 126, 1207–1218. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.P.; Nascimento, B.F. Acoustical characterization of the underground chapels of the new Holy Trinity church in the Fatima shrine, Portugal. In Proceedings of the Forum Acusticum 2011, Aalborg, Denark, 27 June–1 July 2011; pp. 1429–1434. [Google Scholar]
- Álvarez-Morales, L.; Alonso, A.; Girón, S.; Zamarreño, T.; Martellotta, F. Virtual acoustics of the cathedral of Murcia considering occupancy and different source locations. In Proceedings of the Euronoise, Crete, Greece, 27–31 May 2018. [Google Scholar]
- Savioja, L.; Svensson, U.P. Overview of geometrical room acoustic modeling techniques. J. Acoust. Soc. Am. 2015, 138, 708–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CATT. CATT-A v9.0; User’s Manual; CATT: Gothenburg, Germany, 2011. [Google Scholar]
- Rees, I. Common pitfalls in computer modelling of room acoustics. In Proceedings of the Institute of Acoustics, Chesford Grange, Kenilworth, Warwickshire, UK, 5–6 September 2016; p. 38. [Google Scholar]
- TRIMBLE. SketchUp Make, Sunnyvale. 2017. Available online: http://www.sketchup.com/ (accessed on 22 May 2020).
- RAHE KRAFT. SU2CATT, RAHE-KRAFT. 2015. Available online: http://www.rahekraft.de/rk/en/software/su2catt/ (accessed on 22 May 2020).
- Enterprises, B. Beaulieu, Beaulieu Enterprises Ltd. 2021. Available online: https://www.beaulieu.co.uk/attractions/beaulieu-abbey/ (accessed on 9 March 2020).
- Till, R. Sound archaeology: A study of the acoustics of three world heritage sites, Spanish prehistoric painted caves, Stonehenge, and paphos theatre. Acoustics 2019, 1, 39. [Google Scholar] [CrossRef] [Green Version]
- Fergusson, P.; Harrison, S. English Heritage. 2011. Available online: http://www.emglish-heritage.org.uk/visit/places/roche-abbey/history/ (accessed on 8 February 2020).
- Wang, L.M.; Rathsam, J.; Ryherd, S. Interactions of Model Detail Level and Scattering Coefficients in Room Acoustic Computer Simulation. In Proceedings of the International Symposium on Room Acoustics: Design and Science, Hyogo, Japan, 11–13 April 2004. [Google Scholar]
- Bradley, D.T.; Wang, L.M. Effect of model detail level on room acoustic computer simulations. J. Acoust. Soc. Am. 2002, 111, 2389. [Google Scholar] [CrossRef]
- Vorländer, M.; Summers, J.E. Auralization: Fundamentals of acoustics, modelling, simulation, algorithms, and acoustic virtual reality. Acoust. Soc. Am. J. 2008, 123, 4028. [Google Scholar]
- Berardi, U. Simulation of acoustical parameters in rectangular churches. J. Build. Perform. Simul. 2014, 7, 1–16. [Google Scholar] [CrossRef]
- Iannace, G. Acoustic correction of monumental churches with ceramic material: The case of the Cathedral of Benevento (Italy). J. Low Freq. Noise Vib. Active Control 2016, 35, 230–239. [Google Scholar] [CrossRef]
- Martellotta, F. Identifying acoustical coupling by measurements and prediction-models for St. Peter’s Basilica in Rome. J. Acoust. Soc. Am. 2009, 126, 1175–1186. [Google Scholar] [CrossRef]
- Alonso, A.J.; Sendra, J.; Suarez, R.; Zamarreno, T. Acoustic evaluation of the cathedral of Seville as a concert hall and proposals for improving the acoustic quality perceived by listeners. J. Build. Perform. Simul. 2014, 7, 360–378. [Google Scholar] [CrossRef]
- Lisa, M.; Rindel, J.H.; Christensen, C.L. Predicting the acoustics of ancient open-air theatres: The importance of calculation methods and geometrical details. In Proceedings of the Joint Baltic-Nordic Acoustics Meeting, Mariehamn, Åland, 8–10 June 2004. [Google Scholar]
- Olsen, W.O. Average speech levels and spectra in various speaking/listening conditions. Am. J. Audiol. 1998, 7, 21–25. [Google Scholar] [CrossRef]
- Marshall, A.H.; Meyer, J. The directivity and auditory impressions of singers. Acta Acust. Unit. Acust. 1985, 58, 130–140. [Google Scholar]
- Ziolkowski, J.M. The Juggler of Notre Dame and the Medievalizing of Modernity. In War and Peace, Sex and Violence (epub); Open Book Publishers: Cambridge, UK, 2018; pp. 1, 117–170. [Google Scholar]
- Knowles, D. The Religious Orders in England; Cambridge University Press: Cambridge, UK, 1979; Volume 3. [Google Scholar]
- Willimas, J. Yorkshire Footprint Focus Guide, Bath; Footprint Handbooks Ltd.: Bath, UK, 2013. [Google Scholar]
- Postma, B.N.; Katz, B.F.G. Acoustics of Notre-Dame Cathedral de Paris. In Proceedings of the International Congress on Acoustics (ICA), Buenos Aires, Argentina, 5–9 September 2016. [Google Scholar]
- Vorländer, M. Computer simulations in room acoustics: Concepts and uncertainties. J. Acoust. Soc. Am. 2013, 133, 1203–1213. [Google Scholar] [CrossRef] [PubMed]
- Bradley, D.T.; Wang, L.M. Room acoustics in coupled volume spaces. In Proceedings of the Architectural Engineering Conference (AEI) 2006, Omaha, NE, USA, 29 March–1 April 2006. [Google Scholar]
- Anderson, J.S.; Bratos-Anderson, M. Acoustic coupling effects in St Paul’s cathedral, London. J. Sound Vib. 2000, II, 209–225. [Google Scholar] [CrossRef]
- Xiang, N.; Goggans, P.; Jasa, T.; Robinson, P. Bayesian characterization of multiple-slope sound energy decays in coupled-volume systems. J. Acoust. Soc. Am. 2011, 129, 741–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soeta, Y.; Ken, I.; Ryota, S.; Shin-ichi, S.; Tomohiro, O.; Yoichi, A. Effects of sound source location and direction on acoustic parameters in Japanese churches. J. Acoust. Soc. Am. 2021, II, 1206–1220. [Google Scholar] [CrossRef] [PubMed]
- Segler, F.M.; Bradley, R. Christian Worship: Its Theology and Practice; B&H Publishing Group: Nashville, TN, USA, 2006. [Google Scholar]
- The Department for Education. Building Bulletin 93: Acoustic Design of Schools: Performance Standards; Crown: London, UK, 2014. [Google Scholar]
- Harvie-Clark, J.; Dobinson, N. The practical application of G and C50 in classrooms. In Proceedings of the INTER-NOISE and NOISE-CON Congress and Conference, Innsbruck, Austria, 15–18 September 2013. [Google Scholar]
- Long, M. Architectural Acoustics; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Debertolis, P.; Mizdrak, S. The Research for an Archaeoacoustics Standard. In Proceedings of the 2nd ARSA Conference (Advanced Research in Scientific Areas), Zilina, Slovakia, 3–7 December 2013. [Google Scholar]
Level of Detail | # of Surfaces/Volume (m−3) |
---|---|
Low | 0.003 to 0.010 |
Medium | 0.010 to 0.015 |
High | 0.015 to 0.030 |
Material | 125 Hz | 250 Hz | 500 Hz | 1 kHz | 2 kHz | 4 kHz | Reference |
---|---|---|---|---|---|---|---|
Arches & Pillars | 16 | 18 | 16 | 16 | 18 | 17 | [9] |
Limestone Walls | 3 | 3 | 3 | 4 | 5 | 5 | [33] |
Ceiling | 20 | 15 | 10 | 8 | 7 | 7 | [34] |
Floor | 4 | 3 | 1 | 1 | 1 | 5 | [35] |
Audience & Monks | 52 | 68 | 85 | 97 | 93 | 85 | [24] |
Pulpit | 12 | 12 | 15 | 15 | 18 | 18 | [9] |
Windows | 35 | 25 | 18 | 12 | 07 | 04 | [36] |
Door | 14 | 10 | 6 | 8 | 10 | 10 | [9] |
Alonso et al. Scattering Coefficients (s) | ||||||
Surface | 125 Hz | 250 Hz | 500 Hz | 1 kHz | 2 kHz | 4 kHz |
Smooth | 12 | 13 | 14 | 15 | 16 | 17 |
Moderately Irregular | 20 | 25 | 30 | 35 | 40 | 45 |
Irregular | 30 | 40 | 50 | 60 | 70 | 80 |
Material | 125 Hz | 250 Hz | 500 Hz | 1 kHz | 2 kHz | 4 kHz |
---|---|---|---|---|---|---|
Arches & Pillars | 30 | 40 | 50 | 60 | 70 | 80 |
Limestone Walls | 14 | 15 | 16 | 17 | 18 | 19 |
Ceiling | 30 | 40 | 50 | 60 | 70 | 80 |
Floor | 14 | 15 | 16 | 17 | 18 | 19 |
Audience & Monks | 30 | 40 | 50 | 60 | 70 | 80 |
Pulpit | 20 | 25 | 30 | 35 | 40 | 45 |
Windows | 12 | 13 | 14 | 15 | 16 | 17 |
Door | 20 | 25 | 30 | 35 | 40 | 45 |
REFERENCE | 125 | 250 | 500 | 1 kHz | 2 kHz | 4 kHz |
Loud male voice | 57 | 65 | 72 | 71 | 66 | 60 |
Frequency | 125 | 250 | 500 | 1 kHz | 2 kHz | 4 kHz |
Singer | 65 | 68 | 71 | 74 | 77 | 80 |
Acoustic Environment | RT [s] | |
---|---|---|
Beaulieu Abbey | 47,062 | 2.39 s ≤ ≤ 4.20 s 2.29 s ≤ ≤ 3.69 s |
Senanque Abbey | 8330 | = 5.43 s |
Silvacane Abbey | 10,100 | = 6.02 s |
Le Thoronet Abbey | 7360 | = 7.96 s |
Tiglieto Abbey | 3390 | = 3.13 s |
Morimondo Abbey | 12,110 | = 3.82 s |
Chiaravalle Abbey | 14,970 | = 4.41 s |
St. Peter’s Basilica in Rome | 480,000 | = 9.9 s = 9.6 s |
Basilica of Saint Paul outside Walls | 160,000 | = 8.3 s |
Basilica of St. John Lateran | 120,000 | = 5.7 s |
Basilica of Saint Mary Major | 38,000 | = 4.3 s |
Murcia cathedral | 50,000 | 4.28 s ≤ ≤ 4.54 s |
Acoustic Environment | C50 and C80 [dB] | |
---|---|---|
Beaulieu Abbey | 47,062 | −8.06 dB ≤ ≤ 0.77 dB −7.44 dB ≤ ≤ 2.92 dB = −2.45 dB C80[125 Hz4 kHz] = −1.11 dB |
Senanque Abbey | 8330 | = −11.13 dB = −8.11 dB |
Silvacane Abbey | 10,100 | = −11.32 dB = −8.35 dB |
Le Thoronet Abbey | 7360 | = −11.33 dB = −8.73 dB |
Tiglieto Abbey | 3390 | = −6.40 dB = −3.88 dB |
Morimondo Abbey | 12,110 | = −8.29 dB = −5.26 dB |
Chiaravalle Abbey | 14,970 | = −8.58 dB = −6.50 dB |
Murcia cathedral | 50,000 | = −5.18 dB = −3.79 dB |
Acoustic Environment | STI | STI Rating | STI Rating (Non-Native Speakers) | |
---|---|---|---|---|
Beaulieu Abbey | 47,062 | 0.45 ≤ ≤ 0.60 | Bad-poor ≤ ≤ Fair-good | Bad-poor ≤ ≤ Bad-poor |
Malaga cathedral | 118,500 | 0.42 | Bad-poor | Bad-poor |
Ripon cathedral | 31,000 | 0.49 | Poor-fair | Bad-poor |
Seville cathedral | 200,000 | 0.52 | Poor-fair | Bad-poor |
Cordoba cathedral | 155,000 | 0.40 | Bad-poor | Bad-poor |
Christian Basilica | 100,000 | 0.51 | Poor-fair | Bad-poor |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duran, S.; Chambers, M.; Kanellopoulos, I. An Archaeoacoustics Analysis of Cistercian Architecture: The Case of the Beaulieu Abbey. Acoustics 2021, 3, 252-269. https://doi.org/10.3390/acoustics3020018
Duran S, Chambers M, Kanellopoulos I. An Archaeoacoustics Analysis of Cistercian Architecture: The Case of the Beaulieu Abbey. Acoustics. 2021; 3(2):252-269. https://doi.org/10.3390/acoustics3020018
Chicago/Turabian StyleDuran, Sebastian, Martyn Chambers, and Ioannis Kanellopoulos. 2021. "An Archaeoacoustics Analysis of Cistercian Architecture: The Case of the Beaulieu Abbey" Acoustics 3, no. 2: 252-269. https://doi.org/10.3390/acoustics3020018
APA StyleDuran, S., Chambers, M., & Kanellopoulos, I. (2021). An Archaeoacoustics Analysis of Cistercian Architecture: The Case of the Beaulieu Abbey. Acoustics, 3(2), 252-269. https://doi.org/10.3390/acoustics3020018