Modeling of CO2 Efflux from Forest and Grassland Soils Depending on Weather Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soils and Data Description
2.3. Empirical Model Descriptions
2.4. The Parameter Identification Procedure
2.5. Soil CLImate Statistical Simulator Model (SCLISS)
3. Results
3.1. Robust SCLISS Litter or Sod Horizon and Soil Temperature Dependencies
3.2. The Parameter Selection and Condition Comparisons
3.3. Applying the Measured Temperatures and Precipitations and the SCLISS-Modeled Temperatures and Moistures for the Modeling of CO2 Efflux from Soil
4. Discussion
4.1. Weather Conditions Affect the Modeling Quality
4.2. Distributions of the Measured CO2 Efflux Relevant for the Weather-Specific R0 Estimations
4.3. The Weather-Specific Effects and the Model Performances for Different Models and Forest Soils in the Same Climate Zone
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ryan, M.; Law, B. Interpreting, measuring, and modeling soil respiration. Biogeochemistry 2005, 73, 3–27. [Google Scholar] [CrossRef]
- Valentini, R.; Matteucci, G.; Dolman, A.J.; Schulze, E.D.; Rebmann, C.; Moors, E.J.; Granier, A.; Gross, P.; Jensen, N.O.; Pilegaard, K.; et al. Respiration as the main determinant of carbon balance in European forests. Nature 2000, 404, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Le Quéré, C.; Moriarty, R.; Andrew, R.M.; Peters, G.P.; Ciais, P.; Friedlingstein, P.; Jones, S.D.; Sitch, S.; Tans, P.; Arneth, A.; et al. Global carbon budget 2014. Earth Syst. Sci. Data 2015, 7, 47–85. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Ballantyne, A.; Berryman, E.; Fluet-Chouinard, E.; Jian, J.; Morris, K.A.; Rey, A.; Vargas, R. Twenty years of progress, challenges, and opportunities in measuring and understanding soil respiration. J. Geophys. Res. Biogeosci. 2024, 129, e2023JG007637. [Google Scholar] [CrossRef]
- Peltoniemi, M.; Thürig, E.; Ogle, S.; Palosuo, T.; Schrumpf, M.; Wutzler, T.; Butterbach-Bahl, K.; Chertov, O.; Komarov, A.; Mikhailov, A.; et al. Models in country scale carbon accounting of forest soils. Silva Fenn. 2007, 41, 575–602. [Google Scholar] [CrossRef]
- Hanson, P.J.; Edwards, N.T.; Garten, C.T.; Andrews, J.A. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 2000, 48, 115–146. [Google Scholar] [CrossRef]
- Khoroshaev, D.; Kurganova, I.; Lopes de Gerenyu, V.; Sapronov, D.; Kivalov, S.; Aloufi, A.S.; Kuzyakov, Y. Vegetation and Precipitation Patterns Define Annual Dynamics of CO2 Efflux from Soil and Its Components. Land 2024, 13, 2152. [Google Scholar] [CrossRef]
- Sukhoveeva, O.E.; Karelin, D.V.; Zolotukhin, A.N.; Pochikalov, A.V. Soil Respiration in Agricultural and Natural Ecosystems of European Russia. Eurasian Soil Sci. 2023, 56, 1247–1256. [Google Scholar] [CrossRef]
- Swift, M.J.; Heal, O.W.; Anderson, J.M. Decomposition in Terrestrial Ecosystems; Blackwell: Oxford, UK, 1979. [Google Scholar]
- Xu, X.; Inubushi, K.; Sakamoto, K. Effect of vegetations and temperature on microbial biomass carbon and metabolic quotients of temperate volcanic forest soils. Geoderma 2006, 136, 310–319. [Google Scholar] [CrossRef]
- Xu, X.; Shi, Z.; Li, D.; Rey, A.; Ruan, H.; Craine, J.M.; Liang, J.; Zhou, J.; Luo, Y. Soil properties control decomposition of soil organic carbon: Results from data-assimilation analysis. Geoderma 2016, 262, 235–242. [Google Scholar] [CrossRef]
- Dickinson, C.H.; Pugh, G.J.F. Biology of Plant Litter Decomposition; Academic Press: London, UK, 1974; Volumes 1–2. [Google Scholar]
- Khoroshaev, D.A.; Kurganova, I.N.; Lopes de Gerenyu, V.O. Heterotrophic Soil Respiration Response to the Summer Precipitation Regime and Different Depths of Snow Cover in a Temperate Continental Climate. Eurasian Soil Sci. 2023, 56, 1667–1682. [Google Scholar] [CrossRef]
- Jílková, V. Soil respiration in temperate forests is increased by a shift from coniferous to deciduous trees but not by an increase in temperature. Appl. Soil Ecol. 2020, 154, 103635. [Google Scholar] [CrossRef]
- Raich, J.W.; Tufekciogul, A. Vegetation and soil respiration: Correlations and controls. Biogeochemistry 2000, 48, 71–90. [Google Scholar] [CrossRef]
- Kurganova, I.; Lopes de Gerenyu, V.; Khoroshaev, D.; Myakshina, T.; Sapronov, D.; Zhmurin, V. Temperature Sensitivity of Soil Respiration in Two Temperate Forest Ecosystems: The Synthesis of a 24-Year Continuous Observation. Forests 2022, 13, 1374. [Google Scholar] [CrossRef]
- Kurganova, I.N.; Lopes de Gerenyu, V.O.; Myakshina, T.N.; Sapronov, D.V.; Khoroshaev, D.A. Temperature Sensitivity of Soil Respiration in Grasslands in Temperate Continental Climate Zone: Analysis of 25-Year-Long Monitoring Data. Eurasian Soil Sci. 2023, 56, 1232–1246. [Google Scholar] [CrossRef]
- Kurganova, I.N.; Lopes de Gerenyu, V.O.; Myakshina, T.N.; Sapronov, D.V.; Romashkin, I.V.; Zhmurin, V.A.; Kudeyarov, V.N. Native and model assessment of Respiration of forest sod-podzolic soil in Prioksko-Terrasny Biospheric Reserve. Contemp. Probl. Ecol. 2020, 13, 813–824. [Google Scholar] [CrossRef]
- Kurganova, I.N.; Lopes de Gerenyu, V.O.; Khoroshaev, D.A.; Myakshina, T.N.; Sapronov, D.V.; Zhmurin, V.A.; Kudeyarov, V.N. Analysis of the Long-Term Soil Respiration Dynamics in the Forest and Meadow Cenoses of the Prioksko-Terrasny Biosphere Reserve in the Perspective of Current Climate Trends. Eurasian Soil Sci. 2020, 53, 1421–1436. [Google Scholar] [CrossRef]
- Raich, J.W.; Potter, C.S. Global patterns of carbon dioxide emission from soils. Glob. Biogeochem. Cycles 1995, 9, 23–36. [Google Scholar] [CrossRef]
- Chertov, O.G.; Komarov, A.S.; Nadporozhskaya, M.; Bykhovets, S.S.; Zudin, S.L. ROMUL—A model of forest soil organic matter dynamics as a substantial tool for forest ecosystem modeling. Ecol. Model. 2001, 138, 289–308. [Google Scholar] [CrossRef]
- Priputina, I.V.; Bykhovets, S.S.; Frolov, P.V.; Kurganova, I.N.; Lopes de Gerenyu, V.O.; Sapronov, D.V.; Mjakshina, T.N. Application of Mathematical Models ROMUL and Romul_Hum for Estimating CO2 Emission and Dynamics of Organic Matter in Albic Luvisol under Deciduous Forest in the South of Moscow Oblast. Eurasian Soil Sci. 2020, 53, 1480–1491. [Google Scholar] [CrossRef]
- Lopes De Gerenyu, V.O.; Kurganova, I.N.; Rozanova, L.N.; Kudeyarov, V.N. Effect of temperature and moisture on CO2 evolution rate of cultivated Phaeozem: Analyses of long-term field experiment. Plant Soil Environ. 2005, 51, 213–219. [Google Scholar] [CrossRef]
- Juhász, C.; Huzsvai, L.; Kovács, E.; Kovács, G.; Tuba, G.; Sinka, L.; Zsembeli, J. Carbon Dioxide Efflux of Bare Soil as a Function of Soil Temperature and Moisture Content under Weather Conditions of Warm, Temperate, Dry Climate Zone. Agronomy 2022, 12, 3050. [Google Scholar] [CrossRef]
- Dyukarev, E.A.; Kurakov, S.A. Response of Bare Soil Respiration to Air and Soil Temperature Variations According to Different Models: A Case Study of an Urban Grassland. Land 2023, 12, 939. [Google Scholar] [CrossRef]
- Acosta, M.; Pavelka, M.; Montagnani, L.; Kutsch, W.; Lindroth, A.; Juszczak, R.; Janouš, D. Soil surface CO2 efflux measurements in Norway spruce forests: Comparison between four different sites across Europe—From boreal to alpine forest. Geoderma 2013, 192, 295–303. [Google Scholar] [CrossRef]
- Klimek, B.; Chodak, M.; Niklińska, M. Soil respiration in seven types of temperate forests exhibits similar temperature sensitivity. J. Soils Sediments 2021, 21, 338–345. [Google Scholar] [CrossRef]
- Orchard, V.A.; Cook, F.J. Relationship between soil respiration and soil moisture. Soil Biol. Biochem. 1983, 15, 447–453. [Google Scholar] [CrossRef]
- Maier, M.; Schack-Kirchner, H.; Hildebrand, E.E.; Holst, J. Pore-space CO2 dynamics in a deep, well-aerated soil. Eur. J. Soil Sci. 2010, 61, 877–887. [Google Scholar] [CrossRef]
- Lellei-Kovács, E.; Kovács-Láng, E.; Botta-Dukát, Z.; Kalapos, T.; Emmett, B.; Beier, C. Thresholds and interactive effects of soil moisture on the temperature response of soil respiration. Eur. J. Soil Biol. 2011, 47, 247–255. [Google Scholar] [CrossRef]
- Karelin, D.V.; Zamolodchikov, D.G.; Isaev, A.S. Unconsidered sporadic sources of carbon dioxide emission from soils in taiga forests. Dokl. Biol. Sci. 2017, 475, 165–168. [Google Scholar] [CrossRef]
- Kurganova, I.N.; Lopes De Gerenyu, V.O.; Myakshina, T.N.; Sapronov, D.V.; Savin, I.Y.; Shorohova, E.V. Carbon balance in forest ecosystems of southern part of Moscow region under a rising aridity of climate. Contemp. Probl. Ecol. 2017, 10, 748–760. [Google Scholar] [CrossRef]
- Sukhoveeva, O.E.; Karelin, D.V. Assessment of Soil Respiration with the Raich−Hashimoto Model: Parameterisation and Prediction. Izvestia RAN. Ser. Geogr. 2022, 86, 519–527. [Google Scholar]
- Xu, X.; Duan, C.; Wu., H.; Luo, X.; Han, L. Effects of changes in throughfall on soil GHG fluxes under a mature temperate forest, northeastern China. J. Environ. Manag. 2021, 294, 112950. [Google Scholar] [CrossRef] [PubMed]
- Xu, X. Effect of Changes in Throughfall on Soil Respiration in Global Forest Ecosystems: A Meta-Analysis. Forests 2023, 14, 1037. [Google Scholar] [CrossRef]
- Pavelka, M.; Darenova, E.; Dusek, J. Modeling of soil CO2 efflux during water table fluctuation based on in situ measured data from a sedge-grass marsh. Appl. Ecol. Environ. Res. 2016, 14, 423–437. [Google Scholar] [CrossRef]
- Reichstein, M.; Rey, A.; Freibauer, A.; Tenhunen, J.; Valnetini, R.; Banza, J.; Caslas, P.; Cheng, Y.; Grunzweig, J.M.; Irvine, J.; et al. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Glob. Biogeochem. Cycles 2003, 17, 1104. [Google Scholar] [CrossRef]
- Macdonald, C.A.; Anderson, I.C.; Khachane, A.; Singh, B.P.; Barton, C.V.M.; Duursma, R.A.; Ellsworth, D.S.; Singh, B.K. Plant productivity is a key driver of soil respiration response to climate change in a nutrient-limited soil. Basic Appl. Ecol. 2021, 50, 155–168. [Google Scholar] [CrossRef]
- Lal, R. Forest soils and carbon sequestration. For. Ecol. Manag. 2005, 220, 242–258. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A.; Luo, Y.Q. On the variability of respiration in terrestrial ecosystems: Moving beyond Q10. Glob. Change Biol. 2006, 12, 154–164. [Google Scholar] [CrossRef]
- Chen, S.; Huang, Y.; Zou, J.; Shen, Q.; Hu, Z.; Qin, Y.; Chen, H.; Pan, G. Modeling interannual variability of global soil respiration from climate and soil properties. Agric. For. Meteorol. 2010, 150, 590–605. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Gavrishkiva, O. Time lag between photosynthesis and carbon dioxide efflux from soil: A review of mechanisms and controls. Glob. Change Biol. 2010, 16, 3386–3406. [Google Scholar] [CrossRef]
- Kivalov, S.N.; Lopes de Gerenyu, V.O.; Khoroshaev, D.A.; Myakshina, T.; Sapronov, D.; Ivashchenko, K.V.; Kurganova, I.N. Soil Temperature, Organic-Carbon Storage, and Water-Holding Ability Should Be Accounted for the Empirical Soil Respiration Model Selection in Two Forest Ecosystems. Forests 2023, 14, 1568. [Google Scholar] [CrossRef]
- Kivalov, S.N.; Kurganova, I.N.; Lopez de Guerenu, V.O.; Myakshina, T.N.; Sapronov, D.V.; Khoroshaev, D.A. Application of T&P Models for Estimating Respiration of Forest Soils in the Temperate Continental Climate Zone. J. Soils Environ. 2024, 7, e252, (In Russian with English Abstract). [Google Scholar] [CrossRef]
- Monson, R.K.; Lipson, D.L.; Burns, S.P.; Turnipseed, A.A.; Delany, A.C.; Williams, M.W.; Schmidt, S.K. Winter forest soil respiration controlled by climate and microbial community composition. Nature 2006, 439, 711–714. [Google Scholar] [CrossRef] [PubMed]
- Bykhovets, S.S.; Komarov, A.S. A simple statistical model of soil climate with a monthly step. Eurasian Soil Sci. 2002, 35, 392–400. [Google Scholar]
- Reichstein, M.; Beer, C. Soil respiration across scales: The importance of a model-data integration framework for data interpretation. J. Plant Nutr. Soil Sci. 2008, 171, 344–354. [Google Scholar] [CrossRef]
- Wu, D.; Di, C.; Wang, T.; Wang, L.; Chen, X. Characterization of the coherence between soil moisture and precipitation at regional scales. J. Geophys. Res. Atmos. 2021, 126, e2020JD034340. [Google Scholar] [CrossRef]
- Coleman, K.; Jenkinson, D.S. RothC—A model for the turnover of carbon in soil. In Rothamsted Research; Herts: Harpenden, UK, 2014. [Google Scholar]
- Lugato, E.; Bampa, F.; Panagos, P.; Montanarella, L.; Jones, A. Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices. Glob. Change Biol. 2014, 20, 3557–3567. [Google Scholar] [CrossRef]
- Vargas, R.; Carbone, M.S.; Reichstein, M.; Baldocchi, D.D. Frontiers and challenges in soil respiration research: From measurements to model-data integration. Biogeochemistry 2011, 102, 1–13. [Google Scholar] [CrossRef]
- Karelin, D.V.; Azovskii, A.I.; Kumanyaev, A.S.; Zamolodchikov, D.G. Role of Spatial and Temporal Scales in Factor Studies of Soil CO2 Fluxes in Forests of Valdai Hills. For. Sci. 2019, 1, 29–37. [Google Scholar]
- Acosta, M.; Darenova, E.; Krupková, L.; Pavelka, M. Seasonal and inter-annual variability of soil CO2 efflux in a Norway spruce forest over an eight-year study. Agric. For. Meteorol. 2018, 256–257, 93–103. [Google Scholar] [CrossRef]
- WRB 2014. 2015. Available online: https://www.fao.org/soils-portal/data-hub/soil-classification/world-reference-base/en/ (accessed on 30 January 2024).
- Selyaninov, G.L. About the agricultural evaluation of the climate. Tr. GGO 1928, 20, 177–185. (In Russian) [Google Scholar]
- Kivalov, S.N.; Lopes de Gerenyu, V.O.; Khoroshaev, D.A.; Myakshina, T.; Sapronov, D.; Ivashchenko, K.V.; Kurganova, I.N. Optimization of empirical models for the control and assessment of winter soil respiration. In Proceedings of the Eighth National Scientific Conference with International Participation “Mathematical Modeling in Ecology” (EcoMatMod-2023), Pushchino, Russia, 9–11 November 2023; pp. 33–35. [Google Scholar]
- Nadporozhskaya, M.A.; Maksimova, E.Y.; Abakumov, E.V.; Chertov, O.G.; Bykhovets, S.S.; Show, S.H. Recurring surface fires cause soil degradation of forest land: A simulation experiment with the EFIMOD model. Land Degrad. Dev. 2018, 29, 2222–2232. [Google Scholar] [CrossRef]
- Moore, K.; Fitzjarrald, D.; Sakai, R.; Goulden, M.; Munger, J.; Wofsy, S. Seasonal Variation in Radiative and Turbulent Exchange at a Deciduous Forest in Central Massachusetts. J. Appl. Meteorol. 1996, 35, 122–134. [Google Scholar] [CrossRef]
- Lalić, B.; Fitzjarrald, D. Bowen ratio and daily temperature range thresholds: Are they signals of transient seasons? In Proceedings of the EMS Annual Meeting 2021, Online, 6–10 September 2021. [Google Scholar] [CrossRef]
- McLaren, R.G.; Cameron, K.C. Soil Science—An Introduction to the Properties and Management of New Zealand Soils; Oxford University Press: Auckland, New Zealand, 1990; pp. 58–60. [Google Scholar]
- Raich, J.W.; Potter, C.S.; Bhagawatti, D. Interannual variability in global soil respiration, 1980–1994. Glob. Change Biol. 2002, 8, 800–812. [Google Scholar] [CrossRef]
- Priputina, I.V.; Frolov, P.V.; Shanin, V.N.; Bykhovets, S.S.; Kurganova, I.N.; Lopes de Gerenyu, V.O.; Sapronov, D.V.; Zubkova, E.V.; Mjakshina, T.N.; Khoroshaev, D.A. Simulation Modeling of Forest Soil Respiration: Case Study of Entic Carbic Podzol under Coniferous–Broadleaved Forest in the South of Moscow Oblast. Eurasian Soil Sci. 2023, 56, 1291–1303. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature Sensitivity of Soil Carbon Decomposition and Feedbacks to Climate Change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef]
- Chen, B.; Liu, S.; Ge, J.; Chu, J. Annual and Seasonal Variations of Q10 Soil Respiration in the Sub-Alpine Forests of the Eastern Qinghai-Tibet Plateau, China. Soil Biol. Biochem. 2010, 42, 1735–1742. [Google Scholar] [CrossRef]
- Xu, M.; Qi, Y. Spatial and Seasonal Variations of Q 10 Determined by Soil Respiration Measurements at a Sierra Nevadan Forest. Glob. Biogeochem. Cycles 2001, 15, 687–696. [Google Scholar] [CrossRef]
Site | Sand:Silt:Clay | pHKCl | Corg | N | C/N |
---|---|---|---|---|---|
kg C(N)/m2 | |||||
Forest | 85:13:2 | 4.55 ± 0.12 | 2.91 ± 0.30 | 0.20 ± 0.01 | 14.4 ± 0.7 |
Grassland | 85:13:2 | 4.22 ± 0.04 | 2.18 ± 0.07 | 0.22 ± 0.01 | 9.9 ± 0.2 |
Model Condition | Forest | Grassland | ||||||
---|---|---|---|---|---|---|---|---|
Tsoil–Prec | Tair–Prec | Tlit_m–Mlit_m | Tsoil_m–Msoil_m | Tsoil–Prec | Tair–Prec | Tlit_m–Mlit_m | Tsoil_m–Msoil_m | |
all-years | 0.545 | 0.733 | 0.611 | 0.536 | 0.536 | 0.67 | 0.307 | 0.068 |
normal | 0.536 | 0.661 | 0.483 | 0.442 | 0.268 | 0.508 | 0.384 | 0.198 |
wet | 0.357 | 0.719 | 0.685 | 0.52 | 0.672 | 0.771 | 0.718 | 0.596 |
dry | 0.549 | 0.65 | 0.469 | 0.348 | 0.437 | 0.548 | 0.429 | 0.157 |
range | 0.192 | 0.069 | 0.216 | 0.172 | 0.404 | 0.263 | 0.334 | 0.439 |
Correlations | Conditions | Forest | p-Value | Grassland | p-Value |
---|---|---|---|---|---|
Cor(P,Tsoil) | normal | 0.35 | *** | 0.36 | *** |
Cor(P,Tair) | normal | 0.28 | ** | 0.28 | ** |
Cor(P,Tsoil) | wet | 0.67 | *** | 0.66 | *** |
Cor(P,Tair) | wet | 0.63 | *** | 0.61 | *** |
Cor(P,Tsoil) | dry | 0.14 | o | 0.11 | o |
Cor(P,Tair) | dry | 0.06 | . | 0.08 | o |
Conditions | Forest | Grassland | ||
---|---|---|---|---|
Tsoil (°C) | Prec (mm) | Tsoil (°C) | Prec (mm) | |
normal | 0—0.8 | 0–40 | 0–0.5 | – |
dry | 0–0.9 | 0–40 | 0–0.5 | – |
wet | 0–0.4 | 10–50 | 0–0.8 | 20–70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kivalov, S.; Kurganova, I.; Bykhovets, S.; Khoroshaev, D.; Lopes de Gerenyu, V.; Wu, Y.; Myakshina, T.; Kuzyakov, Y.; Priputina, I. Modeling of CO2 Efflux from Forest and Grassland Soils Depending on Weather Conditions. Soil Syst. 2025, 9, 25. https://doi.org/10.3390/soilsystems9010025
Kivalov S, Kurganova I, Bykhovets S, Khoroshaev D, Lopes de Gerenyu V, Wu Y, Myakshina T, Kuzyakov Y, Priputina I. Modeling of CO2 Efflux from Forest and Grassland Soils Depending on Weather Conditions. Soil Systems. 2025; 9(1):25. https://doi.org/10.3390/soilsystems9010025
Chicago/Turabian StyleKivalov, Sergey, Irina Kurganova, Sergey Bykhovets, Dmitriy Khoroshaev, Valentin Lopes de Gerenyu, Yiping Wu, Tatiana Myakshina, Yakov Kuzyakov, and Irina Priputina. 2025. "Modeling of CO2 Efflux from Forest and Grassland Soils Depending on Weather Conditions" Soil Systems 9, no. 1: 25. https://doi.org/10.3390/soilsystems9010025
APA StyleKivalov, S., Kurganova, I., Bykhovets, S., Khoroshaev, D., Lopes de Gerenyu, V., Wu, Y., Myakshina, T., Kuzyakov, Y., & Priputina, I. (2025). Modeling of CO2 Efflux from Forest and Grassland Soils Depending on Weather Conditions. Soil Systems, 9(1), 25. https://doi.org/10.3390/soilsystems9010025