Open AccessFeature PaperReview
Experiments Designed to Study the Non-Linear Transition of High-Power Microwaves through Plasmas and Gases
by
Yakov E. Krasik, John G. Leopold, Guy Shafir, Yang Cao, Yuri P. Bliokh, Vladislav V. Rostov, Valery Godyak, Meytal Siman-Tov, Raanan Gad, Amnon Fisher, Vladimir Bernshtam, Svetlana Gleizer, Denis Zolotukhin and Yakov Slutsker
Cited by 3 | Viewed by 3710
Abstract
The interaction of powerful sub-picosecond timescale lasers with neutral gas and plasmas has stimulated enormous interest because of the potential to accelerate particles to extremely large energies by the intense wakefields formed and without being limited by high accelerating gradients as in conventional
[...] Read more.
The interaction of powerful sub-picosecond timescale lasers with neutral gas and plasmas has stimulated enormous interest because of the potential to accelerate particles to extremely large energies by the intense wakefields formed and without being limited by high accelerating gradients as in conventional accelerator cells. The interaction of extremely high-power electromagnetic waves with plasmas is though, of general interest and also to plasma heating and wake-field formation. The study of this subject has become more accessible with the availability of sub-nanosecond timescale GigaWatt (GW) power scale microwave sources. The interaction of such high-power microwaves (HPM) with under-dense plasmas is a scale down of the picosecond laser—dense plasma interaction situation. We present a review of a unique experiment in which such interactions are being studied, some of our results so far including results of our numerical modeling. Such experiments have not been performed before, self-channeling of HPM through gas and plasma and extremely fast plasma electron heating to keV energies have already been observed, wakefields resulting from the transition of HPM through plasma are next and more is expected to be revealed.
Full article
►▼
Show Figures