Previous Issue
Volume 7, April
 
 

Appl. Syst. Innov., Volume 7, Issue 3 (June 2024) – 6 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
18 pages, 1543 KiB  
Article
Data-Driven Adaptive Controller Based on Hyperbolic Cost Function for Non-Affine Discrete-Time Systems with Variant Control Direction
by Miriam Flores-Padilla and Chidentree Treesatayapun
Appl. Syst. Innov. 2024, 7(3), 38; https://doi.org/10.3390/asi7030038 - 28 Apr 2024
Viewed by 303
Abstract
As technology evolves, more complex non-affine systems are created. These complex systems are hard to model, whereas most controllers require information on systems to be designed. This information is hard to obtain for systems with varying control directions. Therefore, this study introduces a [...] Read more.
As technology evolves, more complex non-affine systems are created. These complex systems are hard to model, whereas most controllers require information on systems to be designed. This information is hard to obtain for systems with varying control directions. Therefore, this study introduces a novel data-driven estimator and controller tailored for single-input single-output non-affine discrete-time systems. This approach focuses on cases when the control direction varies over time and the mathematical model of the system is completely unknown. The estimator and controller are constructed using a Multiple-input Fuzzy Rules Emulated Network framework. The weight vectors are updated through the gradient descent optimization method, which employs a unique cost function that multiplies the error by a hyperbolic tangent. The stability analyses demonstrate that both the estimator and controller converge to uniformly ultimately bounded (UUB) functions of Lyapunov. To validate the results, we show experimental tests of force control that were executed on the z-axis of a drive-controlled 3D scanning robot. This system has a varying control direction, and we also provide comparison results with a state-of-the-art controller. The results show a mean absolute percentage tracking error smaller than one percent on the steady state and the expected variation in the system’s control direction. Full article
Show Figures

Figure 1

16 pages, 10173 KiB  
Article
Pipe Organ Design Including the Passive Haptic Feedback Technology and Measurement Analysis of Key Displacement, Pressure Force and Sound Organ Pipe
by Paweł Kowol, Pawel Nowak, Luca Di Nunzio, Gian Carlo Cardarilli, Giacomo Capizzi and Grazia Lo Sciuto
Appl. Syst. Innov. 2024, 7(3), 37; https://doi.org/10.3390/asi7030037 - 28 Apr 2024
Viewed by 235
Abstract
In this work, an organ pipe instrument with a mechatronic control system including the Passive Haptic Feedback technology is implemented. The test bed consists of a motorized positioning stage mounted to a brace that is attached to a bridge on a platform. A [...] Read more.
In this work, an organ pipe instrument with a mechatronic control system including the Passive Haptic Feedback technology is implemented. The test bed consists of a motorized positioning stage mounted to a brace that is attached to a bridge on a platform. A simple pneumatic mechanism is designed and realized to achieve the same dynamics pressure for each measurement attempt on the keyboard. This system contain pipes, an air compressor, valves, and a piston connected to applied force pressure on the keyboard of the organ pipe. The pneumatic components, like valves and pressure regulators, mounted on the profile plate are connected to the main air supply line via flexible tubing or hoses to the air compressor and mechanical trucker. The pneumatic system has many types of valves that regulate the air speed, air flow, and power. The combination of valves and air compressor control the air flow and the mechanism of piston and pressure on the keyboard. The mechanical actuator presses the key to be tested, and a load cell detects the applied key force. A laser triangulation measurement system based on a Laser Displacement Sensor measures the displacement of the key during the key depression. The velocity of the key motion is controlled by the pneumatic actuator. A miniature-sized strain gauge load cell, which is mounted on a musical keyboard key, measures the contact force between the probe and the key. In addition, the quality of the audio signal generated by the organ instrument is estimated using the Hilbert transform. Full article
Show Figures

Figure 1

17 pages, 1877 KiB  
Article
Usability Analysis of Smart Speakers from a Learnability Perspective for Novel Users
by Toshihisa Doi and Yuki Nishikawa
Appl. Syst. Innov. 2024, 7(3), 36; https://doi.org/10.3390/asi7030036 - 25 Apr 2024
Viewed by 468
Abstract
Although commercial smart speakers are becoming increasingly popular, there is still much potential for investigation into their usability. In this study, we analyzed the usability of commercial smart speakers by focusing on the learnability of young users who are not yet familiar with [...] Read more.
Although commercial smart speakers are becoming increasingly popular, there is still much potential for investigation into their usability. In this study, we analyzed the usability of commercial smart speakers by focusing on the learnability of young users who are not yet familiar with voice user interface (VUI) operation. In the experiment, we conducted a task in which users repeatedly operated a smart speaker 10 times under four conditions, combining two experimental factors: the presence or absence of a screen on the smart speaker and the operation method (voice control only or in conjunction with remote-control operation). The usability of the smart speaker was analyzed in terms of task-completion time, task-completion rate, number of errors, subjective evaluation, and retrospective protocol analysis. In particular, we confirmed and compared the learning curves for each condition in terms of the performance metrics. The experimental results showed that there were no substantial differences in the learning curves between the presence and absence of a screen. In addition, the “lack of feedback” and “system response error” were identified as usability problems, and it was suggested that these problems led to “distrust of the system”. Full article
(This article belongs to the Section Human-Computer Interaction)
Show Figures

Figure 1

42 pages, 5695 KiB  
Article
An Application-Driven Method for Assembling Numerical Schemes for the Solution of Complex Multiphysics Problems
by Patrick Zimbrod, Michael Fleck and Johannes Schilp
Appl. Syst. Innov. 2024, 7(3), 35; https://doi.org/10.3390/asi7030035 - 24 Apr 2024
Viewed by 335
Abstract
Within recent years, considerable progress has been made regarding high-performance solvers for partial differential equations (PDEs), yielding potential gains in efficiency compared to industry standard tools. However, the latter largely remains the status quo for scientists and engineers focusing on applying simulation tools [...] Read more.
Within recent years, considerable progress has been made regarding high-performance solvers for partial differential equations (PDEs), yielding potential gains in efficiency compared to industry standard tools. However, the latter largely remains the status quo for scientists and engineers focusing on applying simulation tools to specific problems in practice. We attribute this growing technical gap to the increasing complexity and knowledge required to pick and assemble state-of-the-art methods. Thus, with this work, we initiate an effort to build a common taxonomy for the most popular grid-based approximation schemes to draw comparisons regarding accuracy and computational efficiency. We then build upon this foundation and introduce a method to systematically guide an application expert through classifying a given PDE problem setting and identifying a suitable numerical scheme. Great care is taken to ensure that making a choice this way is unambiguous, i.e., the goal is to obtain a clear and reproducible recommendation. Our method not only helps to identify and assemble suitable schemes but enables the unique combination of multiple methods on a per-field basis. We demonstrate this process and its effectiveness using different model problems, each comparing the resulting numerical scheme from our method with the next best choice. For both the Allen–Cahn and advection equations, we show that substantial computational gains can be attained for the recommended numerical methods regarding accuracy and efficiency. Lastly, we outline how one can systematically analyze and classify a coupled multiphysics problem of considerable complexity with six different unknown quantities, yielding an efficient, mixed discretization that in configuration compares well to high-performance implementations from the literature. Full article
Show Figures

Figure 1

21 pages, 999 KiB  
Article
Preliminary Estimation for Software Development Projects Empowered with a Method of Recommending Optimal Duration and Team Composition
by Vasyl Teslyuk, Anatoliy Batyuk and Volodymyr Voityshyn
Appl. Syst. Innov. 2024, 7(3), 34; https://doi.org/10.3390/asi7030034 - 23 Apr 2024
Viewed by 311
Abstract
In the early software development stages, the aim of estimation is to obtain a rough understanding of the timeline and resources required to implement a potential project. The current study is devoted to a method of preliminary estimation applicable at the beginning of [...] Read more.
In the early software development stages, the aim of estimation is to obtain a rough understanding of the timeline and resources required to implement a potential project. The current study is devoted to a method of preliminary estimation applicable at the beginning of the software development life cycle when the level of uncertainty is high. The authors’ concepts of the estimation life cycle, the estimable items breakdown structure, and a system of working-time balance equations in conjunction with an agile-fashioned sizing approach are used. To minimize the experts’ working time spent on preliminary estimation, the authors applied a decision support procedure based on integer programming and the analytic hierarchy process. The method’s outcomes are not definitive enough to make commitments; instead, they are supposed to be used for communication with project stakeholders or as inputs for the subsequent estimation stages. For practical usage of the preliminary estimation method, a semistructured business process is proposed. Full article
(This article belongs to the Section Industrial and Manufacturing Engineering)
Show Figures

Figure 1

25 pages, 1805 KiB  
Article
Design and Development of Complex-Order PI-PD Controllers: Case Studies on Pressure and Flow Process Control
by Muhammad Najmi Bin Roslan, Kishore Bingi, P. Arun Mozhi Devan and Rosdiazli Ibrahim
Appl. Syst. Innov. 2024, 7(3), 33; https://doi.org/10.3390/asi7030033 - 23 Apr 2024
Viewed by 421
Abstract
This article examines the performance of the proposed complex-order, conventional and fractional-order controllers for process automation and control in process plants. The controllers are compared regarding disturbance rejection and set-point tracking, considering variables such as response time, robustness to uncertainty, and steady-state error. [...] Read more.
This article examines the performance of the proposed complex-order, conventional and fractional-order controllers for process automation and control in process plants. The controllers are compared regarding disturbance rejection and set-point tracking, considering variables such as response time, robustness to uncertainty, and steady-state error. The study shows that a complex PI-PD controller has better accuracy, faster response time, and better noise rejection. Still, implementation is challenging due to increased complexity and processing requirements. In contrast, a standard PI-PD controller is a known solution but may have problems with accuracy and robustness. Fractional-order controllers based on fractional computations have the potential to improve control accuracy and robustness of non-linear and time-varying systems. Experimental insights and real-world case studies are used to highlight the strengths and weaknesses of each controller. The findings provide valuable insights into the strengths and weaknesses of complex-order and fractional-order controllers and help to select the appropriate controller for specific process plant requirements. Future perspectives on controller design and performance optimization are detailed, identifying the potential benefits of using complex and fractional-order controllers in process plants. Full article
(This article belongs to the Section Control and Systems Engineering)
Show Figures

Figure 1

Previous Issue
Back to TopTop