Optimizing Conductive Polymer Composites: The Role of Graphite Particle Size and Concentration in PVDF, PP, and PET Matrices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Composite Preparation
2.3. Characterization
2.3.1. Morphology Characterization
2.3.2. Fourier Transform Infrared Characterization
2.3.3. Thermal Stability and Electrical Resistivity Characterization
2.3.4. Mechanical Characterization
3. Results and Discussion
3.1. Composites Morphology
3.2. Fourier Transform Infrared Analysis
3.3. Composites Thermal Stability
3.4. Electrical Resistivity
3.4.1. Through-Plane Resistivity
3.4.2. In-Plane Resistivity
3.5. Composites Mechanical Properties
3.5.1. Composites Flexural Behavior
3.5.2. Composites Compression Behavior
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dagdag, O.; Safi, Z.; Hsissou, R.; Erramli, H.; El Bouchti, M.; Wazzan, N.; El Harfi, A. Epoxy pre-polymers as new and effective materials for corrosion inhibition of carbon steel in acidic medium: Computational and experimental studies. Sci. Rep. 2019, 9, 11715. [Google Scholar]
- Khalil, H.A.; Tehrani, M.A.; Davoudpour, Y.; Bhat, A.H.; Jawaid, M.; Hassan, A. Natural fiber reinforced poly (vinyl chloride) composites: A review. J. Reinf. Plast. Compos. 2013, 32, 330–356. [Google Scholar]
- Van de Werken, N.; Tekinalp, H.; Khanbolouki, P.; Ozcan, S.; Williams, A.; Tehrani, M. Additively manufactured carbon fiber-reinforced composites: State of the art and perspective. Addit. Manuf. 2020, 31, 100962. [Google Scholar] [CrossRef]
- Asim, M.; Saba, N.; Jawaid, M.; Nasir, M.; Pervaiz, M.; Alothman, O.Y. A review on phenolic resin and its composites. Curr. Anal. Chem. 2018, 14, 185–197. [Google Scholar]
- Hsissou, R.; Abbout, S.; Berisha, A.; Berradi, M.; Assouag, M.; Hajjaji, N.; Elharfi, A. Experimental, DFT and molecular dynamics simulation on the inhibition performance of the DGDCBA epoxy polymer against the corrosion of the E24 carbon steel in 1.0 M HCl solution. J. Mol. Struct. 2019, 1182, 340–351. [Google Scholar] [CrossRef]
- Sauer, M.; Shiozawa, H.; Ayala, P.; Ruiz-Soria, G.; Liu, X.; Chernov, A.; Pichler, T. Internal charge transfer in metallicity sorted ferrocene filled carbon nanotube hybrids. Carbon 2013, 59, 237–245. [Google Scholar]
- Sijercic, E.; Leung, P.T. Effects of surface charge on the anomalous light extinction from metallic nanoparticles. Opt. Commun. 2016, 370, 198–202. [Google Scholar]
- Souza, P.R.; Nunes, C.S.; Freitas, A.R.; Belinato, J.R.; Pilau, E.J.; Fajardo, A.R.; Muniz, E.C. Sub-and supercritical D-limonene technology as a green process to recover glass fibres from glass fibre-reinforced polyester composites. J. Clean. Prod. 2020, 254, 119984. [Google Scholar]
- Mathur, R.B.; Dhakate, S.R.; Gupta, D.K.; Dhami, T.L.; Aggarwal, R.K. Effect of different carbon fillers on the properties of graphite composite bipolar plate. J. Mater. Process. Technol. 2008, 203, 184–192. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Ramanujam, B.T.S.; Adhikari, A.; Sivaram, S. High-temperature, polymer–graphite hybrid composites for bipolar plates: Effect of processing conditions on electrical properties. J. Power Sources 2007, 163, 702–707. [Google Scholar]
- Hui, C.; Liu, H.B.; Li, J.X.; Li, Y.; He, Y.D. Characteristics and preparation of polymer/graphite composite bipolar plate for PEM fuel cells. J. Compos. Mater. 2009, 43, 755–767. [Google Scholar]
- Ameli, A.; Nofar, M.; Wang, S.; Park, C.B. Lightweight polypropylene/stainless-steel fiber composite foams with low percolation for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2014, 6, 11091–11100. [Google Scholar] [PubMed]
- Ameli, A.; Arjmand, M.; Pötschke, P.; Krause, B.; Sundararaj, U. Effects of synthesis catalyst and temperature on broadband dielectric properties of nitrogen-doped carbon nanotube/polyvinylidene fluoride nanocomposites. Carbon 2016, 106, 260–278. [Google Scholar]
- Adloo, A.; Sadeghi, M.; Masoomi, M.; Pazhooh, H.N. High performance polymeric bipolar plate based on polypropylene/graphite/graphene/nano-carbon black composites for PEM fuel cells. Renew. Energy 2016, 99, 867–874. [Google Scholar]
- Vesco, S.; Salvi, D.; Almonti, D. High performance particle-reinforced epoxy composites with industrial grade graphite, GNPs and hBN: A comparative study. Int. J. Adv. Manuf. Technol. 2025, 136, 1379–1391. [Google Scholar]
- Chodak, I.; Omastova, M.; Pionteck, J. Relation between electrical and mechanical properties of conducting polymer composites. J. Appl. Polym. Sci. 2001, 82, 1903–1906. [Google Scholar]
- Ghosh, A.; Goswami, P.; Mahanta, P.; Verma, A. Effect of carbon fiber length and graphene on carbon-polymer composite bipolar plate for PEMFC. J. Solid State Electrochem. 2014, 18, 3427–3436. [Google Scholar]
- Heo, S.I.; Oh, K.S.; Yun, J.C.; Jung, S.H.; Yang, Y.C.; Han, K.S. Development of preform moulding technique using expanded graphite for proton exchange membrane fuel cell bipolar plates. J. Power Sources 2007, 171, 396–403. [Google Scholar] [CrossRef]
- Wu, M.; Shaw, L. Electrical and mechanical behaviors of carbon nanotube-filled polymer blends. J. Appl. Polym. Sci. 2006, 99, 477–488. [Google Scholar]
- Alo, O.A.; Otunniyi, I.O.; Pienaar, H. Exploring the potential of polyethylene/epoxy/graphite composite as bipolar plate material for proton exchange membrane fuel cell. AIP Conf. Proc. 2020, 2289, 012035. [Google Scholar]
- Dweiri, R.; Suherman, H.; Sulong, A.B.; Al-Sharab, J.F. Structure-property-processing investigation of electrically conductive polypropylene nanocomposites. Sci. Eng. Compos. Mater. 2018, 25, 1177–1186. [Google Scholar] [CrossRef]
- Dweiri, R.; Sahari, J. Electrical properties of carbon-based polypropylene composites for bipolar plates in polymer electrolyte membrane fuel cell (PEMFC). J. Power Sources 2007, 171, 424–432. [Google Scholar]
- Derieth, T.; Bandlamudi, G.; Beckhaus, P.; Kreuz, C.; Mahlendorf, F.; Heinzel, A. Development of highly filled graphite compounds as bipolar plate materials for low and high temperature PEM fuel cells. J. New Mater. Electrochem. Syst. 2008, 11, 21. [Google Scholar]
- Liao, S.H.; Hung, C.H.; Ma, C.C.M.; Yen, C.Y.; Lin, Y.F.; Weng, C.C. Preparation and properties of carbon nanotube-reinforced vinyl ester/nanocomposite bipolar plates for polymer electrolyte membrane fuel cells. J. Power Sources 2008, 176, 175–182. [Google Scholar]
- Antunes, R.A.; De Oliveira, M.C.; Ett, G.; Ett, V. Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance. J. Power Sources 2001, 196, 2945–2961. [Google Scholar] [CrossRef]
- Rzeczkowski, P.; Krause, B.; Pötschke, P. Characterization of highly filled PP/graphite composites for adhesive joining in fuel cell applications. Polymers 2019, 11, 462. [Google Scholar] [CrossRef]
- Alo, O.A.; Otunniyi, I.O.; Pienaar, H.C.V.Z. Prospects of graphite-polypropylene/epoxy blend composite for high performance bipolar plate in polymer electrolyte membrane fuel cell. IOP Conf. Ser. Mater. Sci. Eng. 2019, 655, 012035. [Google Scholar]
- Naji, A.; Krause, B.; Pötschke, P.; Ameli, A. Extruded polycarbonate/Di-Allyl phthalate composites with ternary conductive filler system for bipolar plates of polymer electrolyte membrane fuel cells. Smart Mater. Struct. 2019, 28, 064004. [Google Scholar] [CrossRef]
- Cui, T.; Li, P.; Liu, Y.; Feng, J.; Xu, M.; Wang, M. Preparation of thermostable electroconductive composite plates from expanded graphite and polyimide. Mater. Chem. Phys. 2012, 134, 1160–1166. [Google Scholar]
- Hu, B.; Chang, F.L.; Xiang, L.Y.; He, G.J.; Cao, X.W.; Yin, X.C. High performance polyvinylidene fluoride/graphite/multi-walled carbon nanotubes composite bipolar plate for PEMFC with segregated conductive networks. Int. J. Hydrogen Energy 2021, 46, 25666–25676. [Google Scholar]
- Negawo, T.A.; Polat, Y.; Buyuknalcaci, F.N.; Kilic, A.; Saba, N.; Jawaid, M. Mechanical, morphological, structural and dynamic mechanical properties of alkali treated Ensete stem fibers reinforced unsaturated polyester composites. Compos. Struct. 2019, 207, 589–597. [Google Scholar] [CrossRef]
- Mighri, F.; Huneault, M.A.; Champagne, M.F. Electrically conductive thermoplastic blends for injection and compression molding of bipolar plates in the fuel cell application. Polymer Eng. Sci. 2004, 44, 1755–1765. [Google Scholar] [CrossRef]
- Planes, E.; Flandin, L.; Alberola, N. Polymer composites bipolar plates for PEMFCs. Energy Procedia 2012, 20, 311–323. [Google Scholar] [CrossRef]
- Yoo, M.; Frank, C.W.; Mori, S. Interaction of poly(vinylidene fluoride) with graphite particles. 1. Surface morphology of a composite film and its relation to processing parameters. Chem. Mater. 2003, 15, 850–861. [Google Scholar] [CrossRef]
- Salimi, A.; Yousefi, A.A. FTIR studies of β-phase crystal formation in stretched PVDF films. Polym. Test. 2003, 22, 689–700. [Google Scholar]
- Jahan, N.; Mighri, F.; Rodrigue, D.; Ajji, A. Enhanced electroactive β phase in three-phase PVDF/CaCO3/nanoclay composites: Effect of micro-CaCO3 and uniaxial stretching. J. Appl. Polym. Sci. 2017, 134, 44987. [Google Scholar] [CrossRef]
- Elashmawi, I.S.; Hakeem, N.A. Effect of PMMA addition on characterization and morphology of PVDF. Polym. Eng. Sci. 2008, 48, 895–901. [Google Scholar] [CrossRef]
- Fugallo, G.; Cepellotti, A.; Paulatto, L.; Lazzeri, M.; Marzari, N.; Mauri, F. Thermal conductivity of graphene and graphite: Collective excitations and mean free paths. Nano Lett. 2014, 14, 6109–6114. [Google Scholar] [CrossRef]
- Guo, R.; Ren, Z.; Bi, H.; Xu, M.; Cai, L. Electrical and Thermal Conductivity of Polylactic Acid (PLA)-Based Biocomposites by Incorporation of Nano-Graphite Fabricated with Fused Deposition Modeling. Polymers 2019, 11, 549. [Google Scholar] [CrossRef]
- Norkhairunnisa, M.; Azizan, A.; Mariatti, M.; Ismail, H.; Sim, L.C. Thermal stability and electrical behavior of polydimethylsiloxane nanocomposites with carbon nanotubes and carbon black fillers. J. Compos. Mater. 2012, 46, 903–910. [Google Scholar] [CrossRef]
- Jie, Z.; Yan-Wen, Z.; Jun, H. Influence of graphite particle size and its shape on performance of carbon composite bipolar plate. J. Zhejiang Univ. Sci. A 2005, 6, 1080–1083. [Google Scholar]
- Hui, C.; Hong-Bo, L.; Li, Y.; Jian-Xin, L. Study on the preparation and properties of novolac epoxy/graphite composite bipolar plate for PEMFC. Int. J. Hydrogen Energy 2010, 35, 3105–3109. [Google Scholar] [CrossRef]
- Baptista, R.; Mendão, A.; Guedes, M.; Marat-Mendes, R. An experimental study on mechanical properties of epoxy-matrix composites containing graphite filler. Procedia Struct. Integr. 2016, 1, 74–81. [Google Scholar]
- López Gaxiola, D.; Jubinski, M.M.; Keith, J.M.; King, J.A.; Miskioglu, I. Effects of carbon fillers on tensile and flexural properties in polypropylene-based resins. J. Appl. Polym. Sci. 2010, 118, 1620–1633. [Google Scholar]
- Di Lorenzo, M.L. Crystallization of Poly(ethylene terephthalate): A Review. Polymers 2024, 16, 1975. [Google Scholar] [CrossRef]
- Dallaev, R.; Pisarenko, T.; Sobola, D.; Orudzhev, F.; Ramazanov, S.; Trčka, T. Brief review of PVDF properties and applications potential. Polymers 2022, 14, 4793. [Google Scholar] [CrossRef]
GR | Particle Size (µm) |
---|---|
G1 | 5.9 |
G2 | 17.8 |
G3 | 561 |
Sample | G1 (wt. %) | G2 (wt. %) | G3 (wt. %) |
---|---|---|---|
PVDF/G1 | 40 | - | - |
PVDF/G1 | 60 | - | - |
PVDF/G2 | - | 20 | - |
PVDF/G2 | - | 40 | - |
PVDF/G2 | - | 60 | - |
PVDF/G3 | - | - | 40 |
PVDF/G3 | - | - | 60 |
PP/G2 | - | 60 | - |
PET/G2 | - | 60 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khairi, S.; Rostami-Tapeh-Esmaeil, E.; Mighri, F.; Elkoun, S.; Brassard, M.; Oliaii, E.; Pelletier, P.; Jourdain, G.; Bonnefoy, Y. Optimizing Conductive Polymer Composites: The Role of Graphite Particle Size and Concentration in PVDF, PP, and PET Matrices. J. Compos. Sci. 2025, 9, 178. https://doi.org/10.3390/jcs9040178
Khairi S, Rostami-Tapeh-Esmaeil E, Mighri F, Elkoun S, Brassard M, Oliaii E, Pelletier P, Jourdain G, Bonnefoy Y. Optimizing Conductive Polymer Composites: The Role of Graphite Particle Size and Concentration in PVDF, PP, and PET Matrices. Journal of Composites Science. 2025; 9(4):178. https://doi.org/10.3390/jcs9040178
Chicago/Turabian StyleKhairi, Sarra, Ehsan Rostami-Tapeh-Esmaeil, Frej Mighri, Saïd Elkoun, Martin Brassard, Elaheh Oliaii, Philippe Pelletier, Guy Jourdain, and Yves Bonnefoy. 2025. "Optimizing Conductive Polymer Composites: The Role of Graphite Particle Size and Concentration in PVDF, PP, and PET Matrices" Journal of Composites Science 9, no. 4: 178. https://doi.org/10.3390/jcs9040178
APA StyleKhairi, S., Rostami-Tapeh-Esmaeil, E., Mighri, F., Elkoun, S., Brassard, M., Oliaii, E., Pelletier, P., Jourdain, G., & Bonnefoy, Y. (2025). Optimizing Conductive Polymer Composites: The Role of Graphite Particle Size and Concentration in PVDF, PP, and PET Matrices. Journal of Composites Science, 9(4), 178. https://doi.org/10.3390/jcs9040178