Effect of Monomer Composition on the Core–Shell Structure and Expansion Performance of Thermally Expandable Microspheres
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Suspension Polymerization
2.3. Characterization
3. Results and Discussion
3.1. Chemical Structure of TEMs
3.2. Effect of the Feeding Monomer Composition on the Inner Surface Morphology of TEMs
3.3. Effect of the Reaction Time on the Inner Surface Morphology of TEMs
3.4. Blowing Agent Encapsulation Content and Efficiency of TEMs
3.5. Expansion Capacity of the TEMs.
3.6. The Internal Morphology Model of TEMs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jonsson, M.; Nordin, O.; Malmström, E.; Hammer, C. Suspension polymerization of thermally expandable core/shell particles. Polymer 2006, 47, 3315–3324. [Google Scholar] [CrossRef]
- Kalia, K.; Francoeur, B.; Amirkhizi, A.; Ameli, A. In Situ Foam 3D Printing of Microcellular Structures Using Material Extrusion Additive Manufacturing. ACS Appl. Mater. Interfaces 2022, 14, 22454–22465. [Google Scholar] [CrossRef] [PubMed]
- Kalia, K.; Ameli, A. Understanding the process-microstructure-property relationships in material extrusion additive manufacturing of polylactic acid microcellular foams. Addit. Manuf. 2023, 72, 103636. [Google Scholar] [CrossRef]
- Kang, X.; Li, X.; Li, Y.; Duan, Y. Strengthening and toughening 3D printing of photocured resins by thermal expansion microspheres. J. Appl. Polym. Sci. 2022, 140, e53516. [Google Scholar] [CrossRef]
- Wanghofer, F.; Wolfberger, A.; Oreski, G.; Neumaier, L.; Schlögl, S. Investigation of expandable fillers for reversible adhesive bonding in photovoltaic modules. Int. J. Adhes. Adhes. 2023, 126, 103454. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, X.; Chang, G.; Li, R. Study of ZnO-coated Modified Hollow Microsphere Insulation Coated Fabrics. ChemistrySelect 2023, 8, e202300670. [Google Scholar] [CrossRef]
- Lamm, M.E.; Li, K.; Atchley, J.; Shrestha, S.S.; Mahurin, S.M.; Hun, D.; Aytug, T. Tailorable thermoplastic insulation foam composites enabled by porous-shell hollow glass spheres and expandable thermoplastic microspheres. Polymer 2023, 267, 125652. [Google Scholar] [CrossRef]
- Zhou, S.; Xu, Y.; Tang, J.; Qian, K.; Zhao, J.; Wang, J.; Gao, H.; Li, Z. Expansion force induced in situ formation of a 3D boron nitride network for light-weight, low-k, low-loss, and thermally conductive composites. J. Mater. Chem. A 2022, 10, 14336–14344. [Google Scholar] [CrossRef]
- Xu, Y.; Li, W.; Zhu, M.; Yue, X.; Wang, M. Novel porous fiber-based composites with excellent sound-absorbing and flame-retardant properties. J. Wood Chem. Technol. 2020, 40, 285–293. [Google Scholar] [CrossRef]
- Jiao, S.-Z.; Sun, Z.-C.; Li, F.-R.; Yan, M.-J.; Cao, M.-J.; Li, D.-S.; Liu, Y.; Li, L.-H. Preparation and Application of Conductive Polyaniline-Coated Thermally Expandable Microspheres. Polymers 2018, 11, 22. [Google Scholar] [CrossRef]
- Kim, H.T.; Jaladi, A.K.; Lee, Y.J.; An, D.K. Thermal Expansion Behavior of Thermally Expandable Microspheres Prepared by Suspension Polymerization Using P(AN-MMA-MAA) Core/Shell. Bull. Korean Chem. Soc. 2020, 41, 190–195. [Google Scholar] [CrossRef]
- Kim, H.T.; Jaladi, A.K.; Kim, J.H.; Gundeti, S.; An, D.K. Suspension Polymerization of Thermally Expandable Microspheres Using Cinnamonitrile and Diethyl Fumarate as Crosslinking Agents. Bull. Korean Chem. Soc. 2018, 40, 45–50. [Google Scholar] [CrossRef]
- Zhou, S.; Zhou, Z.; Xu, W.; Ma, H.; Ren, F.; Shen, H. Water as Blowing Agent: Preparation of Environmental Thermally Expandable Microspheres via Inverse Suspension Polymerization. Polym.-Plast. Technol. Eng. 2017, 57, 1026–1034. [Google Scholar] [CrossRef]
- Morehouse, D.S., Jr.; Tetreault, R.J. Expansible Thermoplastic Polymer Particles Containing Volatile Fluid Foaming Agent and Method of Making the Same. U.S. Patent 3,615,972, 26 October 1971. [Google Scholar]
- Kawaguchi, Y.; Oishi, T. Synthesis and properties of thermoplastic expandable microspheres: The relation between crosslinking density and expandable property. J. Appl. Polym. Sci. 2004, 93, 505–512. [Google Scholar] [CrossRef]
- Kawaguchi, Y.; Itamura, Y.; Onimura, K.; Oishi, T. Effects of the chemical structure on the heat resistance of thermoplastic expandable microspheres. J. Appl. Polym. Sci. 2005, 96, 1306–1312. [Google Scholar] [CrossRef]
- Gomez, J.C.; Vishnosky, N.S.; Grafstein, J.T.; Kim, S.T.; Steinhardt, R.C. Thermally expandable microspheres with high expansion ratios: Design of core and shell for largest size change. J. Appl. Polym. Sci. 2022, 139, e52517. [Google Scholar] [CrossRef]
- Mousa, M.; Jonsson, M.; Granbom, L.; Larsson Kron, A.; Malmström, E. Thermally expandable microspheres based on fully or partially bio-based polymers. J. Appl. Polym. Sci. 2024, 141, e55368. [Google Scholar] [CrossRef]
- Tian, S.-c.; Cao, J.-x.; Xie, G.m.; Wang, M.-w.; Shi, Y.-y.; Yi, Y.; Yang, C.-l.; Xiao, Y.-h.; Wei, X.-l.; Tian, B.-m.; et al. Study on preparation and process of poly(MMA-St) thermally expandablecore-shellmicrospheres. J. Appl. Polym. Sci. 2020, 138, 49927. [Google Scholar] [CrossRef]
- Xie, G.; Pan, P.; Bao, Y. Morphology and blowing agent encapsulation efficiency of vinylidene chloride copolymer microspheres synthesized by suspension polymerization in the presence of a blowing agent. J. Appl. Polym. Sci. 2016, 134. [Google Scholar] [CrossRef]
- Zhao, T.; Yang, H.; Xu, X.; Chang, G.; Li, R. Modification of Hollow Expanded Microspheres with Superior Thermal Insulation Properties and Their Applications. Chem.-Asian J. 2023, 18, e202201233. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, Y.; Huang, B.; Lv, S.; Ma, X.; Tang, J. Synthesis and characterization of high temperature resistant thermal expansion microsopheres with P(acrylonitrile/methacrylic acid/N,N-dimethylacrylamide/n-butylacrylate) shell. SN Appl. Sci. 2019, 1, 923. [Google Scholar] [CrossRef]
- Yi, Q.; Li, J.; Zhang, R.; Ma, E.; Liu, R. Preparation of small particle diameter thermally expandable microspheres under atmospheric pressure for potential utilization in wood. J. Appl. Polym. Sci. 2020, 138, e49734. [Google Scholar] [CrossRef]
- Toledo-Manuel, I.; Pérez-Alvarez, M.; Cadenas-Pliego, G.; Cabello-Alvarado, C.J.; Tellez-Barrios, G.; Ávila-Orta, C.A.; Ledezma-Pérez, A.S.; Andrade-Guel, M.; Bartolo-Pérez, P. Sonochemical Functionalization of SiO2 Nanoparticles with Citric Acid and Monoethanolamine and Its Remarkable Effect on Antibacterial Activity. Materials 2025, 18, 439. [Google Scholar] [CrossRef] [PubMed]
- Arshady, R. Suspension, emulsion, and dispersion polymerization: A methodological survey. Colloid Polym. Sci. 1992, 270, 717–732. [Google Scholar] [CrossRef]
- Zhang, R.; Gao, R.; Gou, Q.; Lai, J.; Li, X. Precipitation Polymerization: A Powerful Tool for Preparation of Uniform Polymer Particles. Polymers 2022, 14, 1851. [Google Scholar] [CrossRef]
- Yan, H.; Jiao, Y.; Jin, B.; Zhang, H.; Fu, Z.; Jia, S.; Deng, Y. Insights of mechanism and kinetics of acrylonitrile aqueous precipitation polymerization. J. Macromol. Sci. Part A 2024, 61, 805–821. [Google Scholar] [CrossRef]
- Landfester, K.; Antonietti, M. The polymerization of acrylonitrile in miniemulsions: “Crumpled latex particles” or polymer nanocrystals. Macromol. Rapid Commun. 2000, 21, 820–824. [Google Scholar] [CrossRef]
- Wang, C.; Xin, Z. Effects of itaconic acid and ammonium itaconic acid on cyclization and thermal stabilization of narrow polydispersity polyacrylonitrile terpolymers synthesized in continuous flow. J. Polym. Res. 2025, 32, 42. [Google Scholar] [CrossRef]
- Suo, R.; Xie, L.; Liao, J.; Chen, J.; Lu, C.-Z. Enhanced Charge Separation in a PAN/ZnO Nanocomposite for Promoted Photocatalytic Hydrogen Evolution. ACS Appl. Energy Mater. 2024, 7, 5668–5678. [Google Scholar] [CrossRef]
- Shi, S.; Kuroda, S.; Hosoi, K.; Kubota, H. Poly(methyl methacrylate)/polyacrylonitrile composite latex particles with a novel surface morphology. Polymer 2005, 46, 3567–3570. [Google Scholar] [CrossRef]
- Hu, W.-B. Polymer Features in Crystallization. Chin. J. Polym. Sci. 2022, 40, 545–555. [Google Scholar] [CrossRef]
- Ali, A.; Chiang, Y.W.; Santos, R.M. X-ray Diffraction Techniques for Mineral Characterization: A Review for Engineers of the Fundamentals, Applications, and Research Directions. Minerals 2022, 12, 205. [Google Scholar] [CrossRef]
- Safajou-Jahankhanemlou, M.; Abbasi, F.; Salami-Kalajahi, M. Synthesis and characterization of thermally expandable PMMA-based microcapsules with different cross-linking density. Colloid Polym. Sci. 2016, 294, 1055–1064. [Google Scholar] [CrossRef]
- Bashir, Z. Polyacrylonitrile, an unusual linear homopolymer with two glass transitions. Indian J. Fibre Text. Res. 1999, 24, 1–9. [Google Scholar]
- Bashir, Z. The Hexagonal Mesophase in Atactic Polyacrylonitrile: A New Interpretation of the Phase Transitions in the Polymer. J. Macromol. Sci. Part B 2007, 40, 41–67. [Google Scholar] [CrossRef]
- Simionescu, C.; Asandei, N.; Liga, A. Research in the field of terpolymers. I. Copolymerization of acrylonitrile/methaerylic acid/methyl methacrylate. Die Makromol. Chem. 2003, 110, 278–290. [Google Scholar] [CrossRef]
- Naguib, H.F.; Mokhtar, S.M.; Khalil, N.Z.; Elsabee, M.Z. Polymerization kinetics of indene, methyl methacrylate and acrylonitrile and characterization of their terpolymer. J. Polym. Res. 2009, 16, 693–702. [Google Scholar] [CrossRef]
- Fan, L.; Zhao, D.; Bian, C.; Wang, Y.; Liu, G. Glass transition temperatures of copolymers from methyl methacrylate, styrene, and acrylonitrile: Binary copolymers. Polym. Bull. 2011, 67, 1311–1323. [Google Scholar] [CrossRef]
- Reddy, G.V.R.; Magesh, C.; Sriram, R. Microemulsion co-polymerization of methyl methacrylate with acrylonitrile. Des. Monomers Polym. 2012, 8, 75–89. [Google Scholar] [CrossRef]
- Jonsson, M.; Nordin, O.; Kron, A.L.; Malmström, E. Influence of crosslinking on the characteristics of thermally expandable microspheres expanding at high temperature. J. Appl. Polym. Sci. 2010, 118, 1219–1229. [Google Scholar] [CrossRef]
- Mohy Eldin, M.S.; Elaassar, M.R.; Elzatahry, A.A.; Al-Sabah, M.M.B. Poly (acrylonitrile-co-methyl methacrylate) nanoparticles: I. Preparation and characterization. Arab. J. Chem. 2017, 10, 1153–1166. [Google Scholar] [CrossRef]
P(AN:MMA) (wt%) | Particle Size (μm) 1 | Span 1 | C=O/C≡N 2 | Xc (%) |
---|---|---|---|---|
100:0 | 23.6 | 2.08 | / | 46.4 |
90:10 | 26.3 | 1.27 | 1.205 | 25.9 |
80:20 | 45.57 | 1.74 | 1.982 | 18.6 |
70:30 | 39.93 | 1.87 | 2.668 | 10.8 |
Regions | Element Mass Percent (wt%) | ||
---|---|---|---|
C | N | O | |
Outer surface | 80.87 | 9.37 | 9.76 |
Inner surface | 78.31 | 13.96 | 7.73 |
P(AN:MMA) (wt%) | WIO (wt%) 1 | Encapsulation Ratio (%) | Encapsulation Efficiency (%) |
---|---|---|---|
100:0 | 20 | 5.7 | 28.5 |
90:10 | 20 | 17.9 | 89.5 |
80:20 | 20 | 16.8 | 84.0 |
70:30 | 20 | 18.0 | 90.0 |
P(AN:MMA) (wt%) | Tstart (°C) | Expansion Ratio (Vv) |
---|---|---|
100:0 | / | / |
90:10 | 137.4 | 4.4 |
80:20 | 142.8 | 1.7 |
70:30 | 144.1 | 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, D.; Wang, Y.; Feng, Y.; Jiang, H.; Wang, Y.; Dai, S.; Ding, B.; Sun, Y.; Guo, J. Effect of Monomer Composition on the Core–Shell Structure and Expansion Performance of Thermally Expandable Microspheres. J. Compos. Sci. 2025, 9, 163. https://doi.org/10.3390/jcs9040163
Yang D, Wang Y, Feng Y, Jiang H, Wang Y, Dai S, Ding B, Sun Y, Guo J. Effect of Monomer Composition on the Core–Shell Structure and Expansion Performance of Thermally Expandable Microspheres. Journal of Composites Science. 2025; 9(4):163. https://doi.org/10.3390/jcs9040163
Chicago/Turabian StyleYang, Deli, Yanxiang Wang, Yanqiu Feng, Haotian Jiang, Yongbo Wang, Shichao Dai, Bohan Ding, Yue Sun, and Jinghe Guo. 2025. "Effect of Monomer Composition on the Core–Shell Structure and Expansion Performance of Thermally Expandable Microspheres" Journal of Composites Science 9, no. 4: 163. https://doi.org/10.3390/jcs9040163
APA StyleYang, D., Wang, Y., Feng, Y., Jiang, H., Wang, Y., Dai, S., Ding, B., Sun, Y., & Guo, J. (2025). Effect of Monomer Composition on the Core–Shell Structure and Expansion Performance of Thermally Expandable Microspheres. Journal of Composites Science, 9(4), 163. https://doi.org/10.3390/jcs9040163