A Review on Fusion Welding of Dissimilar Ferritic/Austenitic Steels: Processing and Weld Zone Metallurgy
Abstract
:1. Introduction
2. Electric Arc Welding
3. Laser Beam Welding
4. Discussion
5. Conclusions and Future Directions
- Evaluation of the WZ composition considering the effect of dilution between filler and parent metals.
- Choice of the filler metal for achieving an appropriate composition of the WZ.
- Prediction of the WZ microstructure based on its composition (Schaeffler and WRC 1992 diagrams).
- Solidification mode of the WZ in order to achieve the advantageous presence of a small content of residual primary ferrite in an austenitic matrix.
- The influence of alloying elements and welding parameters on the amount and morphology of residual delta ferrite.
- Possible formation of martensite in the case of autogenous welding.
- Diffusion of alloying elements at the interface of parent metal/WZ.
- Microstructural inhomogeneity due to reheating.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kah, P.; Shrestha, M.; Martikainen, J. Trends in joining dissimilar metals by welding. Appl. Mech. Mater. 2014, 440, 269–276. [Google Scholar] [CrossRef]
- Martinsen, K.; Hu, S.J.; Carlson, B.E. Joining of dissimilar materials CIRP Annals—Manufacturing. Technology 2015, 64, 679–699. [Google Scholar] [CrossRef]
- Soltan, H.; Omar, M. A roadmap for selection of metal welding process: A review and proposals. Weld. World 2022, 66, 2639–2675. [Google Scholar] [CrossRef]
- Maruyama, T. Arc welding technology for dissimilar joints. Weld. Int. 2003, 17, 276–281. [Google Scholar] [CrossRef]
- Boumerzoug, Z. A review: Welding by laser beam of dissimilar metals. Asp. Min. Min. Sci. 2021, 8, 916–920. [Google Scholar] [CrossRef]
- Ekeh, T.D.; Lawal, F.T.; Osoba, L.O.; Amuda, M.O.H. Microstructure and mechanical properties of dissimilar welds of duplex and API steel for offshore applications. Int. J. Mater. Technol. Innov. 2023, 3, 80–91. [Google Scholar] [CrossRef]
- Nabavi, S.F.; Farshidianfar, A.; Dalir, H. A comprehensive review on recent laser beam welding process: Geometrical, metallurgical, and mechanical characteristic modeling. Int. J. Adv. Manuf. Technol. 2023, 129, 4781–4828. [Google Scholar] [CrossRef]
- Abioye, T.E.; Olugbade, T.O.; Ogedengbe, T.I. Welding of dissimilar metals using gas metal arc and laser welding techniques: A review. J. Emerg. Trends Eng. Appl. Sci. 2017, 8, 225–228. [Google Scholar]
- Mvola, B.; Kah, P.; Martikainen, J. Dissimilar ferrous metal welding using advanced gas metal arc welding processes. Rev. Adv. Mater. Sci. 2014, 38, 125–137. [Google Scholar]
- DuPont, J.N. Dilution in fusion welding. In Metals Handbook, 1st ed.; Lienert, T.J., Babu, S.S., Siewert, T.A., Acoff, V.L., Eds.; ASM: Materials Park, OH, USA, 2011; Volume 06A, pp. 115–121. [Google Scholar]
- Abioye, T.E.; Ariwoola, O.E.; Ogedengbe, T.I.; Farayibi, P.K.; Gbadeyan, O.O. Effects of welding speed on the microstructure and corrosion behavior of dissimilar gas metal arc weld joints of AISI 304 stainless steel and low carbon steel. Mater. Today Proc. 2019, 17, 871–877. [Google Scholar] [CrossRef]
- Mvola, B.; Kah, P.; Martikainen, J.; Suoranta, R. Dissimilar welded joints operating in sub-zero temperature environment. Int. J. Adv. Manuf. Technol. 2016, 87, 3619–3635. [Google Scholar] [CrossRef]
- Echezona, N.; Akinlabi, S.A.; Jen, T.C.; Fatoba, O.S.; Hassan, S.; Akinlabi, E.T. Tig welding of dissimilar steel: A review. In Advances in Manufacturing Engineering, Lecture Notes in Mechanical Engineering; Awang, M., Emamian, S.S., Eds.; Springer Nature: Singapore, 2021. [Google Scholar] [CrossRef]
- Shojaati, M.; Beidokhti, B. Characterization of AISI 304/AISI 409 stainless steel joints using different filler materials. Constr. Build. Mater. 2017, 147, 608–615. [Google Scholar] [CrossRef]
- Sun, Y.L.; Obasi, G.; Hamelin, C.J.; Vasileiou, A.N.; Flinta, T.F.; Francis, J.A.; Smith, M.C. Characterization and modelling of tempering during multi-pass welding. J. Mater. Process. Tech. 2019, 270, 118–131. [Google Scholar] [CrossRef]
- Sun, Y.L.; Hamelin, C.J.; Vasileiou, A.N.; Xiong, Q.; Flint, T.F.; Obasi, G.; Francis, J.A.; Smith, M.C. Effects of dilution on the hardness and residual stresses in multipass steel weldments. Int. J. Press. Vessel. Pip. 2020, 187, 104154. [Google Scholar] [CrossRef]
- Hsieh, C.C.; Lin, D.Y.; Chen, M.C.; Wu, W. Microstructure, recrystallization, and mechanical property evolutions in the heat-affected and fusion zones of the dissimilar stainless steels. Mater. Trans. 2007, 48, 2898–2902. [Google Scholar] [CrossRef]
- Hoang, A.T.; Le, V.V.; Nguyen, A.X.; Nguyen, D.N. A study on the changes in microstructure and mechanical properties of multi-pass welding between 316 stainless steel and low-carbon steel. J. Adv. Manuf. Technol. 2018, 12, 25–40. [Google Scholar]
- Bahador, A.; Hamzah, E.; Mamat, M.F. Effect of filler metals on the mechanical properties of dissimilar welding of stainless steel 316L and carbon steel A516 GR 70. J. Teknol. 2015, 75, 61–65. [Google Scholar] [CrossRef]
- Vargas, V.H.; Albiter, A.; Domínguez-Aguilar, M.A.; Altamirano, G.; Maldonado, C. Corrosion resistance of dissimilar GTA welds of pipeline steel and super duplex stainless steels in synthetic brine. Corros. Iournal. 2021, 77, 668–680. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lu, M.-x.; Zhang, L.; Chang, W.; Xu, L.-n.; Hu, L.-h. Effect of welding process on the microstructure and properties of dissimilar weld joints between low alloy steel and duplex stainless steel. Int. J. Miner. Metall. Mater. 2012, 19, 518–524. [Google Scholar] [CrossRef]
- Ming, H.; Zhang, Z.; Wang, J.; Han, E.-H.; Wang, P.; Sun, Z. Microstructure of a safe-end dissimilar metal weld joint (SA508-52-316L) prepared by narrow-gap GTAW. Mater. Charact. 2017, 123, 233–243. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, Q.; Wang, L.; Zeng, C.; Wang, X. Study on A-TIG welding of Q245R/321 dissimilar steel. IOP Conf. Ser. Earth Environ. Sci. 2019, 310, 042011. [Google Scholar] [CrossRef]
- Yılmaz, R.; Tümer, M. Microstructural studies and impact toughness of dissimilar weldments between AISI 316 L and AH36 steels by FCAW. Int. J. Adv. Manuf. Technol. 2013, 67, 1433–1447. [Google Scholar] [CrossRef]
- Afriansyah, A.A. Dissimilar metal welding using Shielded metal arc welding: A Review. Technol. Rep. Kansai Univ. 2020, 64, 1935–1948. [Google Scholar]
- Bahandari, D.; Chhibberb, R.; Arorac, N.; Mehtad, R. Investigation of TiO2–SiO2–CaO–CaF2 based electrode coatings on weld metal chemistry and mechanical behaviour of bimetallic welds. J. Manuf. Process. 2016, 23, 61–74. [Google Scholar] [CrossRef]
- Pratiwi, D.K.; Arifin, A.; Gunawan; Mardhi, A.; Afriansyah. Investigation of welding parameters of dissimilar weld of SS316 and ASTM A36 joint using a grey-based Taguchi Optimization Approach. J. Manuf. Mater. Process. 2023, 7, 39. [Google Scholar] [CrossRef]
- Mas, F.; Tassin, C.; Roch, F.; Yescas, M.; Todeschini, P.; Bréchet, Y. Growth morphologies and primary solidification modes in a dissimilar weld between a low-alloy steel and an austenitic stainless steel. Metals 2018, 8, 284. [Google Scholar] [CrossRef]
- Nivas, R.; Singh, P.K.; Das, G.; Das, S.K.; Kumar, S.; Mahato, B.; Sivaprasad, K.; Ghosh, M. A comparative study on microstructure and mechanical properties near interface for dissimilar materials during conventional V-grooveand narrow gap welding. J. Manuf. Process. 2017, 25, 274–283. [Google Scholar] [CrossRef]
- Asadollahi, A.; Bahrami, A.; Shamanian, M. The effects of filler metal and butter layer on the microstructure and mechanical properties of API 5L X65/AISI 304L joint. J. Mater. Res. Technol. 2023, 23, 4148–4166. [Google Scholar] [CrossRef]
- Ghosh, P.S.; Sen, A.; Chattopadhyaya, S.; Sharma, S.; Singh, J.; Li, C.; Królczyk, G.; Rajkumar, S. Progressive developments and challenges in dissimilar laser welding of steel to various other light alloys (Al/Ti/Mg): A comprehensive review. Heliyon 2022, 8, e11710. [Google Scholar] [CrossRef]
- Anawa, E.M.; Olabi, A.G. Optimization of tensile strength of ferritic/austenitic laser-welded components. Opt. Lasers Eng. 2008, 46, 571–577. [Google Scholar] [CrossRef]
- Casalino, G.; Guglielmi, P.; Lorusso, V.D.; Mortello, M.; Peyrec, P.; Sorgente, D. Laser offset welding of AZ31B magnesium alloy to 316 stainless steel. J. Mater. Process. Technol. 2017, 242, 49–59. [Google Scholar] [CrossRef]
- Pereira, A.B.; Cabrinha, A.; Rocha, F.; Marques, P.; Fernandes, F.A.O.; Alves de Sousa, R.J. Dissimilar metals laser welding between DP1000 steel and aluminum alloy 1050. Metals 2019, 9, 102. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, G.; Zhou, Y.; Liao, S. Optimization of deep penetration laser welding of thick stainless steel with a 10 kW fiber laser. Mater. Des. 2014, 53, 568–576. [Google Scholar] [CrossRef]
- Stanciu, E.M.; Pascu, A.; Tierean, M.H.; Roata, I.C.; Voiculescu, I.; Hulka, I.; Croitoru, C. Dissimilar laser welding of AISI 321 and AISI 1010. Tech. Gaz. 2018, 25, 344–349. [Google Scholar] [CrossRef]
- Scutelnicu, E.; Iordachescu, M.; Rusu, C.C.; Mihailescu, D.; Ocaña, J.L. Metallurgical and mechanical characterization of low carbon steel—Stainless steel dissimilar joints made by laser autogenous welding. Metals 2021, 11, 810. [Google Scholar] [CrossRef]
- Venkatakrishna, A.; Lakshminarayanan, A.; Vasantharaja, P.; Vasudevan, M. Decisive impact of filler-free joining processes on the Microstructural evolution, tensile and impact properties of 9Cr-1Mo-V-Nb to 316 L(N) dissimilar joints. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 2408–2427. [Google Scholar] [CrossRef]
- Danielewski, H.; Skrzypczyk, A.; Tofil, S.; Witkowski, G.; Rutkowski, S. Numerical Simulation of Laser Welding Dissimilar Low Carbon and Austenitic Steel Joint. Open Eng. 2020, 10, 491–498. [Google Scholar] [CrossRef]
- Hamada, A.; Ghosh, S.; Ali, M.; Jaskari, M.; Järvenpää, A. Studying the strengthening mechanisms and mechanical properties of dissimilar laser-welded butt joints of medium-Mn stainless steel and automotive high-strength carbon steel. Mater. Sci. Eng. A 2022, 856, 143936. [Google Scholar] [CrossRef]
- Hamada, A.; Khosravifard, A.; Ali, M.; Ghosh, S.; Jaskari, M.; Hietala, M.; Järvenpää, A.; Newishy, M. Micromechanical analysis and finite element modelling of laser-welded 5-mm-thick dissimilar joints between 316L stainless steel and low-alloyed ultra-high-strength steel. Mater. Sci. Eng. A 2023, 882, 145442. [Google Scholar] [CrossRef]
- Prabakaran, M.P.; Kannan, G.R. Optimization of laser welding process parameters in dissimilar joint of stainless steel AISI316/AISI1018 low carbon steel to attain the maximum level of mechanical properties through PWHT. Opt. Laser Technol. 2019, 112, 314–322. [Google Scholar] [CrossRef]
- Prabakaran, M.P.; Kannan, G.R. Effects of post-weld heat treatment on dissimilar laser welded joints of austenitic stainless steel to low carbon steel. Int. J. Press. Vessel. Pip. 2021, 191, 104322. [Google Scholar] [CrossRef]
- Liu, F.; Zhou, X.; Chen, X.; Gong, X.; Wu, L.; Chen, B.; Chen, K.; Tan, C. Melt flowing behaviors and microstructure evolution during laser offset welding of dissimilar metals between AH36 and 304 steels. Opt. Laser Technol. 2022, 151, 10802. [Google Scholar] [CrossRef]
- Li, G.; Zhang, C.; Gao, M.; Zeng, X. Role of arc mode in laser-metal active gas arc hybrid welding of mild steel. Mater. Des. 2014, 61, 239–250. [Google Scholar] [CrossRef]
- Russo Spena, P.; Angelastro, A.; Casalino, G. Hybrid laser arc welding of dissimilar TWIP and DP high strength steel weld. J. Manuf. Process. 2019, 39, 233–240. [Google Scholar] [CrossRef]
- Zhang, X.; Mi, G.; Wang, C. Microstructure and performance of hybrid laser-arc welded high-strength low alloy steel and austenitic stainless steel dissimilar joint. Opt. Laser Technol. 2020, 122, 105878. [Google Scholar] [CrossRef]
- Missori, S.; Sili, A. Prediction of weld metal microstructure in laser beam welded clad steel. Metallurgist 2018, 62, 84–92. [Google Scholar] [CrossRef]
- Salminen, A. The filler wire—Laser beam interaction during laser welding with low alloyed steel filler wire. Mechanika 2010, 84, 67–74. [Google Scholar]
- Yu, W.X.; Liu, B.X.; Chen, C.X.; Liu, M.Y.; Zhang, X.; Fang, W.; Ji, P.G.; He, J.N.; Yin, F.X. Microstructure and mechanical properties of stainless steel clad plate welding joints by different welding processes. Sci. Technol. Weld. Join. 2020, 25, 571–580. [Google Scholar] [CrossRef]
- Hansen, K.S.; Olsen, F.O.; Kristiansen, M.; Madsen, O. Joining of multiple sheets in a butt-joint configuration using single pass laser welding with multiple spots. J. Laser Appl. 2015, 27, 032011. [Google Scholar] [CrossRef]
- Kristiansen, M.; Hansen, K.S.; Langbak, A.; Johansen, S.B.; Krempin, S.B.; Hornum, M.D. Single pass laser welding with multiple spots to join four sheets in a butt-joint configuration. Phys. Procedia 2017, 89, 205–213. [Google Scholar] [CrossRef]
- Cui, L.; Chen, H.; Chen, B.; He, D. Welding of dissimilar steel/Al Joints using dual-beam lasers with side-by-side configuration. Metals 2018, 8, 1017. [Google Scholar] [CrossRef]
- Xu, S. Thermal stress analysis of dissimilar welding joints by finite element method. Procedia Eng. 2011, 15, 3860–3864. [Google Scholar] [CrossRef]
- Bharthi, A.D.; Babu, U.H. Structural and Thermal Analysis of Dissimilar Metal Welding of 1020 Mild Steel and 304 Stainless Steel. Int. J. Sci. Eng. Technol. Res. 2015, 4, 1761–1771. [Google Scholar]
- An, G.; Park, J.; Lim, W.; Park, H.; Han, I. Characteristics of welding residual stress distribution in dissimilar weld joints. Metals 2022, 12, 405. [Google Scholar] [CrossRef]
- Dokme, F.; Kulekci, M.K.; Esme, U. Microstructural and mechanical characterization of dissimilar metal welding of Inconel 625 and AISI 316L. Metals 2018, 8, 797. [Google Scholar] [CrossRef]
- Ramkumar, T.; Selvakumarb, M.; Narayanasamyc, P.; Ayisha Begamd, A.; Mathavand, P.; Arun Rajd, A. Studies on the structural property, mechanical relationships and corrosion behaviour of Inconel 718 and SS 316L dissimilar joints by TIG welding without using activated flux. J. Manuf. Proc. 2017, 30, 290–298. [Google Scholar] [CrossRef]
- Shankar, V.; Gill, T.P.S.; Mannan, S.L.; Sundaresan, S. Solidification Cracking in Austenitic Stainless SteelWelds. Sadhana Acad. Proc. Eng. Sci. 2003, 28, 359–382. [Google Scholar]
- Manitsas, D.; Andersson, J. Hot Cracking Mechanisms in Welding Metallurgy: A Review of Theoretical Approaches. In Proceedings of the ICEAF-V, Chios Island, Greece, 22–28 June 2018. [Google Scholar]
- Fei, Z.; Pan, Z.; Cuiuri, D.; Li, H.; Van Duin, S.; Yu, Z. Microstructural characterization and mechanical properties of K-TIG welded SAF2205/AISI316L dissimilar joint. J. Manuf. Process. 2019, 45, 340–355. [Google Scholar] [CrossRef]
- Landowski, M.; ’Swierczynska, A.; Rogalski, G.; Fydrych, D. Autogenous fiber laser welding of 316L austenitic and 2304 lean duplex stainless steels. Materials 2020, 13, 2930. [Google Scholar] [CrossRef]
- Alali, M.; Abass, M.H.; Abbas, W.S.; Shehabd, A.A. Effect of nickel powder buffering layer on microstructure and hardness properties of high carbon steel/stainless steel arc stud welding. Mater. Res. 2020, 23, e20190567. [Google Scholar] [CrossRef]
- Giudice, F.; Sili, A. Weld metal microstructure prediction in laser beam welding of austenitic stainless steel. Appl. Sci. 2021, 11, 1463. [Google Scholar] [CrossRef]
- Tandon, V.; Patil, A.P.; Kowshik, S. Impact of filler electrodes on welding properties of dissimilar welded 316L/201 austenitic stainless steels. Eng. Proc. 2023, 59, 90. [Google Scholar] [CrossRef]
- Wu, C.; Li, S.; Zhang, C.; Wang, X. Microstructural evolution in 316LN austenitic stainless steel during solidification process under different cooling rates. J. Mater. Sci. 2016, 51, 2529–2539. [Google Scholar] [CrossRef]
- Zhai, R.; Zhang, H.; Xu, B.; Liu, S.; Xie, B.; Sun, M. Elimination of δ-ferrite in N50 steel and its effect on cryogenic mechanical properties. Cryogenics 2022, 126, 103522. [Google Scholar] [CrossRef]
- Bunaziv, I.; Olden, V.; Akselsen, O.M. Metallurgical Aspects in the Welding of Clad Pipelines—A Global Outlook. Appl. Sci. 2019, 9, 3118. [Google Scholar] [CrossRef]
- Valiente Bermejo, M.A. Reagent selection in austenitic stainless steel solidification modes characterization. Weld. J. 2012, 91, 133s–139s. [Google Scholar]
- Yu, P.; Thompson, K.J.; MCCarthy, J.; Kou, S. Microstructure evolution and solidification cracking in austenitic stainless steel. Welds. Weld. J. 2018, 97, 301s–314s. [Google Scholar] [CrossRef]
- Tandon, V.; Thombre, M.A.; Patil, A.P.; Taiwade, R.V.; Vashishtha, H. Effect of Heat Input on the Microstructural, mechanical, and corrosion properties of dissimilar weldment of conventional austenitic stainless steel and low-nickel stainless steel. Metallogr. Microstruct. Anal. 2020, 9, 668–677. [Google Scholar] [CrossRef]
- Li, Y.; Luo, Y.; Li, J.; Song, D.; Xu, B.; Chen, X. Ferrite formation and its effect on deformation mechanism of wire arc additive manufactured 308 L stainless steel. J. Nucl. Mater. 2021, 550, 152933. [Google Scholar] [CrossRef]
- Zhou, C.; Dia, P.; Wu, H.; He, M.; Liu, X.; Chu, P.K. Effect of the ferrite morphology on hydrogen embrittlement of MAG welded 304 austenitic stainless steel. Appl. Surf. Sci. 2022, 606, 154866. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, S.; Rong, L. Properties of heavy-section AISI 316 stainless steel casting. Met. Mater. Trans. 2020, 51, 2998–3008. [Google Scholar] [CrossRef]
- Weman, K. Welding Processes Handbook; Woodhead Publishing Ltd.: Abington, PA, USA; Cambridge, UK, 2003; pp. 149–150. [Google Scholar]
- Chuaiphan, W.; Kumkoon, P.; Kalnaowakul, P. Dissimilar welding of AISI 201 and 202 low nickel stainless steels by GTA and PA welding processes. J. Alloys Metall. Syst. 2023, 4, 100047. [Google Scholar] [CrossRef]
- Unnikrisshan, R.; Satish Indury, K.S.N.; Ismail, T.P.; Bhadauria, A.; Shekhawat, S.K.; Khatirkar, R.K.; Sanjay, G.S. Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments. Mater. Charct. 2014, 93, 10–23. [Google Scholar] [CrossRef]
- Vitek, J.M.; David, S.A.; Hinman, C.R. Improved Ferrite Number Prediction Model That Accounts for Cooling Rate Effects—Part 2: Model Results. Weld. J. 2003, 82, 43s–50s. [Google Scholar]
- DuPont, J.N. Fundamentals of weld solidification. In Metals Handbook, 1st ed.; Lienert, T.J., Babu, S.S., Siewert, T.A., Acoff, V.L., Eds.; ASM: Materials Park, OH, USA, 2011; Volume 06A, pp. 96–114. [Google Scholar]
- Ghosh, A.; Misra, D.; Acharyya, S.K. Experimental and numerical investigation on laser welding of 2205 duplex stainless steel. Lasers Manuf. Mater. Process. 2019, 6, 228–246. [Google Scholar] [CrossRef]
- Kik, T. Heat source models in numerical simulations of laser welding. Materials 2020, 13, 2653. [Google Scholar] [CrossRef] [PubMed]
- Giudice, F.; Missori, S.; Sili, A. Parameterized multipoint-line analytical modeling of a mobile heat source for thermal field prediction in laser beam welding. Int. J. Adv. Manuf. Technol. 2021, 112, 1339–1358. [Google Scholar] [CrossRef]
- Giudice, F.; Sili, A. Validation of a theoretical model for laser welding thermal field by multi-physics numerical simulation. Metals 2023, 13, 2020. [Google Scholar] [CrossRef]
- Gajjar, P.K.; Khatri, B.C.; Siddhpura, A.; Siddhpura, M.A. Sensitization and desensitization (healing) in austenitic stainless steel: A Critical Review. Trans. Indian Inst. Met. 2022, 75, 1411–1427. [Google Scholar] [CrossRef]
- Ramdan, R.D.; Kariem, M.A.; Neswan, O.; Wiriawan, F.; Suratman, R.; Widyanto, B.; Wirawan, R. Mechanical properties and microstructure at stainless steel HAZ from dissimilar metal welding after heat treatment processes. IOP Conf. Ser. Mater. Sci. Eng. 2019, 553, 012034. [Google Scholar] [CrossRef]
- Dai, P.; Li, S.; Wu, L.; Wang, Y.; Feng, G. Dean Deng A new numerical model to predict welding-induced sensitization in SUS304 austenitic stainless steel joint. J. Mater. Res. Technol. 2022, 17, 234–243. [Google Scholar] [CrossRef]
- Winarto, W.; Anis, M.; Riastuti, R.; Suarjana, I.N. Study the effect of welding position and plate thickness to the mechanical and microstructural properties of the TIG dissimilar metal welded between carbon steel ASTM A36 and stainless steel 304 plates. Mater. Sci. Forum 2020, 1000, 364–372. [Google Scholar] [CrossRef]
- DuPont, J.N. Microstructural evolution and high temperature failure of ferritic to austenitic dissimilar welds. Int. Mater. Rev. 2012, 57, 208–231. [Google Scholar] [CrossRef]
- Nimko, M.O. Influence of welding parameters on decarburization in heat affected zone of dissimilar weldments after post weld heat treatment. Arch. Mater. Sci. Eng. 2021, 112, 23–31. [Google Scholar] [CrossRef]
- Britto, J.G.; Sulbihar, A.D.; Dinesh, K.L.; Jeya, J.; Durai, R.R.B.; Sriram, V. Microstructural studies of P91 and SS304L dissimilar welding. Mater. Today Proc. 2021, 47, 4571–4577. [Google Scholar] [CrossRef]
Composition Ranges | Solidification Modes | Sequence of Transformations |
---|---|---|
Creq/Nieq > 2.0 | F (ferritic) | L → L + δ → δ |
1.5 < Creq/Nieq < 2.0 | FA (ferritic-austenitic) | L → L + δ → L + δ + γ → δ + γ |
1.37 < Creq/Nieq <1.5 | AF (austenitic-ferritic) | L → L + γ → L + δ + γ → γ + δ |
Creq/Nieq < 1.37 | A (austenitic) | L → L + γ → γ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giudice, F.; Missori, S.; Scolaro, C.; Sili, A. A Review on Fusion Welding of Dissimilar Ferritic/Austenitic Steels: Processing and Weld Zone Metallurgy. J. Manuf. Mater. Process. 2024, 8, 96. https://doi.org/10.3390/jmmp8030096
Giudice F, Missori S, Scolaro C, Sili A. A Review on Fusion Welding of Dissimilar Ferritic/Austenitic Steels: Processing and Weld Zone Metallurgy. Journal of Manufacturing and Materials Processing. 2024; 8(3):96. https://doi.org/10.3390/jmmp8030096
Chicago/Turabian StyleGiudice, Fabio, Severino Missori, Cristina Scolaro, and Andrea Sili. 2024. "A Review on Fusion Welding of Dissimilar Ferritic/Austenitic Steels: Processing and Weld Zone Metallurgy" Journal of Manufacturing and Materials Processing 8, no. 3: 96. https://doi.org/10.3390/jmmp8030096
APA StyleGiudice, F., Missori, S., Scolaro, C., & Sili, A. (2024). A Review on Fusion Welding of Dissimilar Ferritic/Austenitic Steels: Processing and Weld Zone Metallurgy. Journal of Manufacturing and Materials Processing, 8(3), 96. https://doi.org/10.3390/jmmp8030096